

Ref: 02598-05001-32006

October 10, 2005

Mr. Floyd Wiggins Wiggins Enterprises, Inc. 1370 Airport Boulevard Santa Rosa, CA 95403

Re: Ozone Remedial System Installation and Start-up Report - Second Quarter 2005, Wiggins Property, 3454 Santa Rosa Avenue, Santa Rosa, California, SCDHS-EHD Site # 00001849, NCRWQCB Site #1TSR007

Dear Mr. Wiggins:

In accordance with Winzler & Kelly Consulting Engineers' (Winzler & Kelly's) March 2005 *Remedial Action Plan and System Design Report* (RAP), the following activities have been conducted during the second quarter of 2005 at the Wiggins Property, 3454 Santa Rosa Avenue, Santa Rosa, California (Figures 1 and 2):

- Installed 12 ozone sparge points (SP-1 through SP-12);
- Installed an ozone remediation system and completed start-up activities;
- Performed operation and maintenance on the ozone system following manufacturer's system procedures;
- Performed weekly groundwater monitoring and sampling for the first month; and
- Prepare this report to document the installation and monitoring activities.

OZONE SYSTEM INSTALLATION

A summary of the field activities related to the installation of the ozone sparge points and the startup of the ozone system is provided below.

,
ines.
sting.
ation
S
).
2

Personnel Present: Winzler & Kelly's Geologist, Brian Wingard; Environmental Scientist,

Brian Bacciarini; and Environmental Engineer, Pon Xayasaeng

Permits: Prior to drilling, Winzler & Kelly obtained Drilling Permit #4651 dated

April 29, 2005 (Appendix A) from the Sonoma County Department of

Health Services (SCDHS).

Drilling Contractor: Cascade Drilling, Inc., of Rancho Cordova, CA, C-57 License

#717510.

Drilling Method: Ozone sparge points were installed using 8-inch hollow-stem augers. A

detailed summary of the sparge point installation procedures is provided in the Site-Specific Ozone Sparge Point Installation

Procedures (Appendix B).

Number of Borings: Twelve soil borings were completed and converted to ozone sparge

points SP-1 through SP-12 (Figure 2).

Well Depths: Ozone sparge points SP-1 through SP-12 were drilled and installed to

total depths ranging from 16 to 25 feet below ground surface (bgs). The lowest historic depth-to groundwater recorded at the site was 11.30 feet bgs; therefore, the sparge point depths will allow for at least 4.7 feet of

saturated zone.

Ozone Sparge Point Sampling and Analysis: Prior to the installation of the ozone sparge points, grab groundwater samples were collected from each boring. New disposable bailers were used to collect and transfer groundwater samples from each boring into the appropriate, laboratory-supplied, certified clean sample containers.

Analytical Sciences Laboratory (Analytical Sciences) of Petaluma, California (a California-certified laboratory) analyzed the groundwater samples for total petroleum hydrocarbons as gasoline (TPH-G), methyl-tert butyl ether (MTBE), and for benzene, toluene, ethyl benzene, and total xylenes (BTEX) by EPA Method 8015M/8260B.

Ozone Sparge Point Construction:

The ozone sparge points are constructed using 0.5-inch stainless steel drop tubing attached to 3 feet of 1.0-inch diameter wire wrapped 0.020-slotted screen. The screen is surrounded by a #2/12 sand pack extending 1-foot above the screen interval with a 2-foot bentonite plug. The points are sealed with a cement/bentonite mixture from the bentonite plug to the ground surface. Sparge point heads are protected with an 18-inch heavy-duty steel cover and apron, flush-to-grade box to protect the system housing. The sparge points are fitted with a 0.5-inch diameter stainless steel tee, check valves, compression fittings and Teflon tubing that supplies ozone. The Teflon tubing is contained in 2-inch Schedule 40 PVC distribution conduits that are buried approximately 12 inches bgs. The completed sparge point construction details are shown on Figure 3.

Groundwater Sampling and Analysis: Grab groundwater samples were collected from each soil boring prior to the installation of the ozone sparge points for reconnaissance purposes. In addition, grab groundwater samples were collected weekly (June 14, 23, 30, and July 8, 2005) from monitoring wells MW-5 and MW-8 through MW-10 as required by the SCDHS. New disposable bailers were used to collect and transfer all groundwater samples from soil borings and monitoring wells into the appropriate laboratory-supplied, certified clean sample containers.

As required by the SCDHS, weekly grab groundwater samples collected from monitoring wells were analyzed for BTEX, acetone, and oxygenated fuel additives by EPA Method 8260B, for hexavalent chromium (Cr⁺⁶) by EPA Method 7196A, for bromate (BrO₃⁻¹) and bromide (Br⁻¹) by EPA Method 300 (IC), and for molybdenum (Mo), selenium (Se), and vanadium (V) by EPA Method 6010/200.9.

Soil and Rinsate Water Disposal:

Soil samples were collected from soil cuttings generated by the ozone sparge point activities and analyzed for appropriate parameters to meet soil disposal requirements. Rinsate water from the ozone sparge point installation activities and groundwater sampling events was collected and stored into 55-gallon DOT approved drums and later disposed by Clearwater Environmental. Copies of the waste manifests are provided in Appendix C.

Groundwater Monitoring and Sampling Results

The groundwater elevation data and dissolved oxygen concentrations collected during the June through July 2005 sampling events are summarized on Tables 1 and 2.

The analytical results of the grab groundwater samples collected from each of the boreholes drilled for the ozone sparge points are summarized in Table 3. Groundwater samples collected from within the excavation limits of the former underground storage tanks (Figure 2) contained the highest concentrations of petroleum-related constituents. Analytical results of groundwater samples collected from SP-12 did not quantify any petroleum-related constituents above the laboratory's reportable detection limits (RDLs).

Laboratory analytical results of grab groundwater samples collected during the June through July 2005 sampling events did not quantify any petroleum-related constituents above the laboratory's RDLs in monitoring wells MW-8 and MW-9. BTEX was quantified above the laboratory's RDLs in monitoring wells MW-5 and MW-10. Of the five oxygenated fuel additives, only tert-butyl alcohol (TBA) was detected in MW-5 at 37 μ g/L and only during the June 14, 2005 sampling event. Oxygenated fuel additives and acetone were not detected (detection limits varied) in any of the groundwater samples collected from MW-10. In addition, the laboratory noted that 1,2-dichloroethane was detected in MW-5 at 1.4 μ g/L during the July 8, 2005 sampling event. Bromide (Br⁻¹) was detected in all wells. Ozone oxidation/degradation by-product related constituents (such as BrO₃⁻¹) were not quantified above the laboratory's RDLs in any of the monitoring wells. Br⁻¹ (a reduced form) is commonly found in groundwater, while BrO₃⁻¹ is an oxidize form of Br that can be found in association with the ozonation process. Tables 4 and 5 summarize the analytical results.

The laboratory QA/QC included the use of method blanks to exclude false-positive analyses and the use of laboratory control samples to evaluate the percentage recovery of known analyte spikes. The recovery percentages for all of the sample analytes were within acceptable ranges. The complete laboratory reports, QA/QC data, and the chain-of-custody forms are included in Appendix D.

Site Geology and Hydrogeology

Boreholes for ozone sparge points SP-1 through SP-12 were logged and sampled from approximately 16 to 25 feet bgs to ensure proper screen placement of the sparge point. The sparge points were placed within the excavation limits of the former underground storage tanks and just outside the excavation limits to optimize remediation of the effected groundwater. Soils encountered during sparge point installation were consistent with previous soil borings and wells completed at the site. Copies of the boring logs are provided in Appendix E. In general, soils encountered consisted of stratified beds of silty sands to gravelly silts, sands, and gravels.

Ozone Sparge System Installation

From May 16 through 19, 2005, Winzler & Kelly conducted oversight responsibilities during the underground construction of the remedial system installation. Dunaway Enterprises, Inc. performed the site work including the construction of the system enclosure, trenching, and installation of the ozone system components. This work also included bringing in new electrical service to the property, installing the ozone unit and enclosure, trenching and backfilling from the enclosure to the individual sparge points (SP-1 through SP-12), and completing all sparge point connections.

On June 2 and 3, 2005, the remedial system manufacturer, Applied Process Technology, Inc. (APT), of Pleasant Hill, California, installed the ozone unit and completed the final system hook-up. Prior to start-up of the ozone system, APT field personnel performed a leak test on each sparge point supply line, valve, and connection using compressed air with a representative from the SCDHS observing. The field test consisted of pressurizing the ozone supply lines with 30 pounds square inch (psi) of air and then used a soap spray to check each sparge point for leaks. Any encountered leaks were repaired and the sparge points were rechecked. In addition, APT field personnel performed an initial test run of the ozone generator and ozone sparging. The system ran for three days injecting only air provided by the air compressor and re-checked for leaks prior to the generation and injection of ozone. The system passed the leak test prior to generation of any ozone.

Ozone System Start-Up

On June 7, 2005, the ozone system was started with a regulator from the SCDHS present. The ozone pressure and flow rate was initially set to operate at 18 psi and 0.25 standard cubic feet per minute (SCFM). These parameters are monitored by a pressure gauge and a rotameter which are both adjusted using the generator adjustment knob. The mass of ozone delivered to each well is the same regardless of the slight variation in permeability. The back pressure for each sparge point varies and is monitored by a pressure gauge. The backpressure of each sparge point was observed to range from 9 to 14 psi which is a result of line loss in the small delivery tubing and slight variations of the aquifer permeability properties. Over time the backpressure was observed to decrease in each of the sparge points. The ozone generator was initially set at approximately 0.7 amps, which produced 0.5 pounds of ozone per day (lbs O₃/day), representing an average mass of 0.063 lbs O₃/day per sparge point. The sparge points initially in operation are SP-1 through SP-6, SP-8, and SP-10. The ozone injection was programmed to run on an 80-minute cycle (10 minutes per sparge point and one sparge point at a time) followed by 5 minutes of compressed air delivered to each sparge point. The air injection operates concurrently but independently from the ozone generator and has its own set of pressure gauges and rotameter. Once the ozone delivery has been completed in a specific sparge point location and cycles to the next location, the compressed air is injection in the previous sparge point location for the programmed 5 minute duration, and advancing to the next location only after the ozone injection cycle has been completed. One of the pressure gauges on the air delivery line monitors the backpressure of each sparge point during air injection. The air flow rate was set at 1 SCFM and is intended to force ozone out into the formation. Also, the air injection will purge the residual ozone in the sparge point, which prevents the potential for ozone leakage to the sparge point wellheads.

On June 8, 2005, Winzler & Kelly performed the first operation and maintenance inspection after 24 hours of continuous run time. The ozone system was operating as designed and consequently the ozone generator rate was increased from 0.5 lbs O₃/day to 1.10 lbs O₃/day representing an ozone mass increase from 0.063 to 0.14 lbs O₃/day per sparge point. The ozone pressure and delivery flow rate was kept at 18 psi and 0.25 SCFM and the compressed air flow rate remained at 1 SCFM. The ozone system has been running continuously for 1,555.65 hours as of August 9, 2005.

Operation and maintenance inspections are scheduled for the 1st and 15th of each month. During these inspections, system parameters (includes ozone generator rate and flow rate) will be recorded. Ozone system updates will be reported in the semi-annual groundwater monitoring report.

Recommendations

Based on the baseline analytical results and the analytical results of the weekly groundwater monitoring and sampling events, Winzler & Kelly recommends monitoring and sampling for ozone related constituents on a quarterly basis. The ozone is not expected to begin significant oxidation of Br⁻¹ until oxidation of petroleum hydrocarbons is subsequently completed. The manufacturer of the ozone injection system has indicated that oxidation of Br⁻¹ is insignificant as long as oxidizable petroleum hydrocarbon concentrations are above 500 μg/L. The quarterly monitoring recommendation is based on the absence of Cr⁺⁶, Mo, Se, and V in baseline groundwater samples and samples collected during the June through July 2005 sampling events. Winzler & Kelly recommends that monitoring wells MW-8 and MW-9 be analyzed quarterly for Br⁻¹ and BrO₃⁻¹. Once total petroleum hydrocarbon concentrations drop below 500 μg/L in monitoring wells MW-5 and MW-10 sampling of these wells will be on a monthly basis for Br⁻¹ and BrO₃⁻¹.

If you have any questions or comments regarding this project, please contact David J. Vossler, Project Manager, at (707) 523-1010.

Sincerely,

WINZLER & KELLY

Pon Xayasaeng

Environmental Engineer

Kent O'Brien, PG, CEG Senior Project Geologist

sc

Attachments

Figures:

Figure 1 – Location Map

Figure 2 – Site Map

Figure 3 – Ozone Sparge & Extraction Well Piping Plan

Figure 4 – Typical Nested Ozone Sparge Point Construction Detail

Tables:

Table 1 – Water Level Data

Table 2 – Indicator Parameters

Table 3 – Analytical Results of Ozone Sparge Point Grab Samples

Table 4 – Analytical Results of Monitoring Well Samples

Table 5 – Additional Analytical Results of Monitoring Well Samples

Appendices:

Appendix A – Drilling Permit

Appendix B – Site-Specific Ozone Sparge Point Installation Procedures

Appendix C – Waste Manifests

Appendix D – Analytical Laboratory Reports

Appendix E – Boring Logs

c: Mr. Cliff Ives, Sonoma County Department of Health Services, Environmental Health Division, 475 Aviation Boulevard, Suite 220, Santa Rosa, California 95403

3454 Santa Rosa Ave Santa Rosa, California

FIGURE 1

J: \04\259801\CAD\005\Sparge Piping pian.dwg Oct 05, 2005 - 1:00pm

Table 1. Water Level Data

Wiggins Property

3454 Santa Rosa Avenue, Santa Rosa, CA

Well ID	Date	Groundwater Elevation	Depth-to- Water	Top of Casing	Free Product Thickness	Screen Interval	Sand Pack Interval	Bentonite Grout Interval
		MSL	feet	bgs		fe	eet	<u>l</u>
MW-1 TH	ROUGH MW-	4 HAVE BEEN	ABANDONE	D				
	•							
MW-5	04/29/04	99.64	6.25	105.89	^a	5'-20'	4'-21.5'	0'-4'
	07/29/04	96.64	9.25		a			
	03/02/05	102.34	3.55		a			
	05/12/05	101.88	4.01		a			
	06/14/05	100.61	5.28		a a			
	06/23/05 06/30/05	100.10 100.15	5.74	-	a			
	07/08/05	99.52	6.37		a			
	08/09/05	98.63	7.26		a			
	08/09/03	90.03	7.20					
MW-6	04/29/04	100.72	5.76	106.48	a	5'-20'	4'-21.5'	0'-4'
	07/29/04	97.57	8.91	100.10	a			
	03/02/05	105.03	1.45		a			
	05/12/05	103.27	3.21	1	a			
	08/09/05	99.68	6.80		a			
	_							
MW-7	04/29/04	100.55	5.73	106.28	a	5'-20'	6'-21.0'	0'-4'
	07/29/04	97.05	9.23		a			
	03/02/05	104.78	1.50		a			
	05/12/05	103.61	2.67		a			
	08/09/05	99.09	7.19		a			
MW-8	04/29/04	99.81	6.53	106.24	a	5'-20'	4'-21.0'	0'-4'
IVI VV -0	07/29/04	96.56	9.78	106.34	a	3-20	4-21.0	0-4
	03/02/05	104.10	2.24		a			
	05/12/05	102.78	3.56		a			
	06/14/05	100.48	5.86		a			
	06/23/05	100.49	5.85		a			
	06/30/05	99.88	6.46		a			
	07/08/05	99.63	6.71	1	a			
	08/09/05	98.55	7.79		a			
					_			
MW-9	04/29/04	99.67	6.07	105.74	a	5'-20'	4'-20'	0'-4'
	07/29/04	96.57	9.17		a			
	03/02/05	102.18	3.56		a			
	05/12/05	101.69	4.05		a			
	06/14/05	100.48	5.26		a			
	06/23/05 06/30/05	100.28 99.82	5.46 5.92	-	a a			
	07/08/05	99.82	6.22	-	a			
	08/09/05	98.57	7.17		a			
	00,07,00	70.07	,.11	l	1		1	<u>I</u>
MW-10	8/15/2002*	94.56	11.30	105.86	a	5'-20'	4'-20'	0'-4'
	11/26/2002*	95.16	10.70		a			
	2/26/2003*	100.89	4.97		a			
	5/20/2003*	98.40	7.46		a			
	9/24/2003*	95.10	10.67		a			
	04/29/04		^b		0.05			
	07/29/04		b		0.15			
	03/02/05		b		0.02			
	5/12/2005 ^c	101.92	3.94		< 0.02			
	6/14/2005 ^c	100.55	5.31		< 0.02			
	6/23/2005 °	100.11	5.75		< 0.02			
	6/30/2005 °	99.81	6.05		< 0.02			
	7/8/2005 °	99.54	6.32		a			
	8/9/2005 °	98.55	7.31		a			

Table 1. Water Level Data

Wiggins Property

3454 Santa Rosa Avenue, Santa Rosa, CA

Well ID	Date	Groundwater Elevation	Depth-to- Water	Top of Casing	Free Product Thickness	Screen Interval	Sand Pack Interval	Bentonite/ Grout Interval
		MSL	feet	bgs		fe	eet	
MW-11	04/29/04	99.59	6.11	105.70	a	5'-20'	4'-20'	0'-4'
	07/29/04	96.60	9.10		a			
	03/02/05	102.21	3.49		a			
	05/12/05	101.76	3.94		a			
	08/09/05	98.56	7.14		a			
MW-12	04/29/04	99.57	6.26	105.83	a	5'-20'	4'-20'	0'-4'
	07/29/04	96.59	9.24		a			
	03/02/05	102.21	3.62		a			
	05/12/05	101.78	4.05		a			
	08/09/05	98.49	7.34		a			

Abbreviations:
MSL = Mean Sea Level

bgs = Below Ground Surface

--- = Not Measured

* = Data by others, not verified by Winzler & Kelly

a = Free Product Not Present

b = Free Product Present

c = Depth-to-water measured using free product interface meter

Table 2. Indicator Parameters

Wiggins Property 3454 Santa Rosa Avenue, Santa Rosa, CA

Well ID	Sample Date	pН	Temperature (°F)	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)
		HAVE DEEN	ABANDONED	` ′	(111)	(IIIg/ 23)
MIW-I IH	KUUGH MW-4	HAVE BEEN	ABANDUNED	'		
MW-5	04/29/04	6.63	67.28	1317	-38	NM
WIW-5	07/29/04	6.52	68.90	1265	-101	NM
	03/02/05	6.65	67.64	1416	-14	0.66
	05/12/05	6.65	66.20	1060	144	0.25
	06/14/05	NM	NM	NM	NM	0.86
	06/23/05	NM	NM	NM	NM	NM
	06/30/05	NM	NM	NM	NM	0.16
	07/08/05	NM	NM	NM	NM	0.55
	08/09/05	6.65	69.62	1336	-74	0.34
	•		•	•		•
MW-6	04/29/04	6.42	67.82	778	180	NM
	07/29/04					NM
	03/02/05					0.70
	05/12/05					0.69
	08/09/05					0.31
MW-7	04/29/04	6.67	61.70	780	215	NM
	07/29/04					3.45
	05/12/05					1.37
	08/09/05					0.97
	1			1		
MW-8	04/29/04	6.36	59.72	332	-51	NM
	07/29/04					NM
	03/02/05					3.05
	05/12/05	6.52	59.36	345	-34 NM	0.22
	06/14/05	NM	NM	NM	NM	2.15
	06/23/05	NM NM	NM NM	NM NM	NM NM	NM 1.00
	06/30/05		ł	-		1.09
	07/08/05 08/09/05	NM 6.59	NM 61.70	NM 387	-76	1.36 0.57
	08/09/03	0.39	01.70	367	-70	0.57
MW-9	04/29/04	6.81	66.20	443	186	NM
11111	07/29/04	6.76	66.70	721	199	NM
	03/02/05	6.76	65.30	939	285	1.69
	05/12/05	6.63	68.00	1466	-53	2.41
	06/14/05	NM	NM	NM	NM	2.15
	06/23/05	NM	NM	NM	NM	NM
	06/30/05	NM	NM	NM	NM	0.27
	07/08/05	NM	NM	NM	NM	2.54
	08/09/05	7.07	68.36	704	82	1.01
MW-10	04/29/04					NM
	07/29/04					NM
	03/02/05					NM
	05/12/05	6.59	67.64	973	-82	NM
	06/14/05	NM	NM	NM	NM	14.32
	06/23/05	NM	NM	NM	NM	NM
	06/30/05	NM	NM	NM	NM	15.35
	07/08/05	NM	NM	NM	NM	13.17
	08/09/05	6.81	70.88	894	-42	17.20

Table 2. Indicator Parameters

Wiggins Property 3454 Santa Rosa Avenue, Santa Rosa, CA

Well ID	Sample Date	рН	Temperature (°F)	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)
MW-11	04/29/04	6.84	67.46	867	155	NM
	07/29/04	6.74	67.46	759	194	NM
	03/02/05	6.81	67.46	862	233	0.34
	05/12/05	6.83	67.28	804	117	0.43
	08/09/05	7.03	68.54	790	50	0.52
	*		•	•		•
MW-12	04/29/04	6.98	69.62	849	142	NM
	07/29/04	6.85	68.00	881	188	NM
	03/02/05	6.90	68.00	817	229	0.76
	05/12/05	6.95	67.46	772	106	0.35
	08/09/05	7.14	68.72	809	37	0.35

Abbreviations:

 $^{o}F =$ degrees Fahrenheit uS/cm = microSiemens per centimeter ORP = Oxidation Reduction Potential

mV = milliVolts

DO = Dissolved Oxygen

mg/L = milligrams per literNM = Not Measured

-- = Not Sampled

Table 3. Analytical Results of Ozone Sparge Point Grab Samples

Wiggins Property 3454 Santa Rosa Avenue, Santa Rosa, CA

		EPA 5030/8015M/8020						
Boring ID	Date Sampled	ТРН-G	MTBE	В	T	E	X	
				ug/	Ĺ			
SP-1	05/05/05	9,100	<2.5	310	140	420	1,400	
SP-2	05/05/05	2,500	< 5.0	16	1.4	92	120	
SP-3	05/05/05	6,800	< 50	310	12	310	250	
SP-4	05/05/05	2,000 a	<2.5	27	1.9	68	60	
SP-5	05/05/05	2,100	<2.5	8.1	1.6	86	84	
SP-6	05/05/05	12,000	<2.5	66	75	670	520	
SP-7	05/04/05	17,000	<20	240	130	1,000	2,000	
SP-8	05/03/05	18,000		18	9.3	40	20	
SP-9	05/03/05	40,000		30	<20	<20	43	
SP-10	05/03/05	7,000		110	6.4	200	46	
SP-11	05/03/05	3,300		58	6.6	3.7	10	
SP-12	05/03/05	< 50		< 0.5	< 0.5	< 0.5	<1.5	

Abbreviations:

TPH-G = Total petroleum hydrocarbons as gasoline

MTBE = Methyl tert-butyl ether

B = Benzene

T = Toluene

E = Ethyl benzene

X = Total xylenes

ug/L = Micrograms per liter

Notes:

a = BTEX confirmed present and MTBE confirmed absent by GC/MS (EPA 8260).

--- = Not analyzed due to lab error

<50 = Analyte not detected at indicated detection limit.

Table 4. Analytical Results of Monitoring Wells Samples

Wiggins Property

3454 Santa Rosa Avenue, Santa Rosa, CA

Well ID	Sample Date	трн-G	TPH-D	трн-мо	В	Т	E ug	Х.	ТВА	МТВЕ	DIPE	ЕТВЕ	ТАМЕ
	04/29/04	870	57 ^a	<200	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
	07/29/04	1,100	95 ^a	<200	4.8	<1.0	3.7	1.6	<25	<1.0	<1.0	<1.0	<1.0
	03/02/05	750	<50	<200	8.3	1.7	6.6	26	46	<1.0	<1.0	<1.0	<1.0
MW-5	05/12/05	320	54	<200	<1.0 b	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
	06/14/05				<1.0	<1.0	1.0	2.1	37	<1.0	<1.0	<1.0	<1.0
	06/23/05				<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
	06/30/05				5.3	1.3	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
	07/08/05				15 °	1.2	2.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
	1		1	1			1	1		1	1		
MW-6	04/29/04	<50	< 50	<200	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
	07/29/04						Not require	d to sample					
	04/29/04	<50	<50	<200	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
MW-7	07/29/04	<30	<30	<200	<1.0	<1.0	Not require		<23	<1.0	<1.0	<1.0	<1.0
	07/29/04						Not require	u to sample					
	04/29/04	<50	<50	<200	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
	07/29/04												
	03/02/05												
	05/12/05	<50	<50	<200	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
MW-8	06/14/05				<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
	06/23/05				<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
	06/30/05				<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
	07/08/05				<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
	04/29/04	<50	< 50	<200	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
	07/29/04	<50	<50	<200	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
	03/02/05	<50	<50	<200	<1.0	5.5	2.0	9.8	<25	<1.0	<1.0	<1.0	<1.0
MW-9	05/12/05	<50	<50	<200	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
	06/14/05 06/23/05				<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<25 <25	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
	06/23/03				<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
	07/08/05				<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
	07/08/03				<1.0	<1.0	<1.0	<1.0	\23	<1.0	<1.0	<1.0	<1.0
	04/29/04	Approximately	0.05 feet of free	e product presen	t								
	07/29/04			e product presen									
	03/02/05			e product presen									
MW 10	05/12/05	8,800	8,000 d	<200	55	17	310	426	<250	<10	<10	<10	<10
MW-10	06/14/05				170	50	450	845	<250	<10	<10	<10	<10
	06/23/05				160	48	360	756	<25	<10	<10	<10	<10
	06/30/05				140	42	270	527	< 500	<20	<20	<20	<20
	07/08/05				220	81	460	957	<125	< 5.0	< 5.0	< 5.0	< 5.0
	04/29/04	< 50	< 50	<200	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
MW-11	07/29/04	<50	< 50	<200	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
	03/02/05	<50	<50	<200	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
	05/12/05	<50	<50	<200	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
	0.4/20/0.4	-50	-50	200	-1.0	.1.0	.1.0	.1.0	-25	.10	.1.0	.1.0	.1.0
	04/29/04	<50	<50	<200	<1.0	<1.0	<1.0	<1.0	<25	<1.0	<1.0	<1.0	<1.0
MW-12	07/29/04 03/02/05	<50 <50	<50 <50	<200 <200	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<25 <25	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
	05/02/05	<50 <50	<50	<200	<1.0	<1.0	<1.0	<1.0	<25 <25	<1.0	<1.0	<1.0	<1.0
	03/12/03	<30	<30	<200	<1.0	<1.0	<1.0	<1.0	<23	<1.0	<1.0	<1.0	<1.0

- Abbreviations:

 TPH-G = Total petroleum hydrocarbons as gasoling
 TPH-D = Total petroleum hydrocarbons as diese
 TPH-MO = Total petroleum hydrocarbons as motor oi
 - B = Benzene
 - T = Toluene
 - E = Ethyl benzene
 - X = Total xylenes
 TBA = Tert-butyl alcohol
 - MTBE = Methyl tert-butyl ether
 DIPE = Di-isopropyl ether
 ETBE = Ethyl tert-butyl ether

 - TAME = Tert-amyl methyl ether
 - ug/L = Micrograms per liter

- Notes:
 <1.0 = Analyte not detected at indicated detection limit
 - a = The chromatogram does not exhibit a chromatographic pattern characteristic of diesel. Higher boiling point constituents of weathered gasoline are present
 b = The following additional compound was detected: 1,2-dichloroethane (1.0 ug/L
 c = The following additional compound was detected: 1,2-dichloroethane (1.4 ug/L
 d = The sample chromatogram exhibits a pattern that suggests both weathered gasoline and diesel are simultaneously present.

Table 5. Additional Analytical Results of Monitoring Well Samples

Wiggins Property

3454 Santa Rosa Avenue, Santa Rosa, CA

MW-5	n Vanadiun (V)	Selenium (Se)	Molybdenum (Mo)	Bromide (Br ⁻¹)	Bromate (BrO ₃ ⁻¹)	Hexavalent Chromium (CR ⁺⁶)	Acetone	Sample Date	Well ID
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			g/L	mg		ug/L			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.05	< 0.005	< 0.05	0.32	<0.015 b	<0.005 a	<1.0	05/12/05	MW-5
$\begin{array}{ c c c c c c c c c }\hline & 06/30/05 & <1.0 & <0.005 & & <0.015 & & 0.41 & <0.05 & <0.005 \\ \hline 07/08/05 & <1.0 & <0.005 & & <0.015 & & 0.41 & <0.020 & <0.005 \\ \hline \hline 08/12/05 & <1.0 & <0.005 & & <0.015 & & 0.41 & <0.05 & <0.005 \\ \hline 06/14/05 & <1.0 & <0.005 & & <0.010 & & 0.094 & <0.05 & <0.005 \\ \hline 06/23/05 & <1.0 & <0.005 & & <0.010 & & 0.094 & <0.05 & <0.005 \\ \hline 06/30/05 & <1.0 & <0.005 & & <0.015 & & & 0.072 & <0.05 & <0.005 \\ \hline 06/30/05 & <1.0 & <0.005 & & <0.010 & & 0.074 & <0.05 & <0.005 \\ \hline 07/08/05 & <1.0 & <0.005 & & <0.010 & & 0.074 & <0.05 & <0.005 \\ \hline 06/14/05 & <1.0 & <0.005 & & <0.015 & & & & & & & & & & & & & & & & & & &$	< 0.05	< 0.005	< 0.05	0.37	<0.015 ^b	<0.005 a	<1.0	06/14/05	
$\begin{array}{ c c c c c c c c c }\hline MW-8 & 0.5/12/05 & <1.0 & <0.005 & <0.015 & 0.41 & <0.020 & <0.005 \\\hline MW-8 & 0.5/12/05 & <1.0 & <0.005 & <0.005 & <0.015 & 0.14 & <0.05 & <0.005 \\\hline 06/14/05 & <1.0 & <0.005 & <0.010 & 0.094 & <0.05 & <0.005 \\\hline 06/23/05 & <1.0 & <0.005 & <0.015 & 0.072 & <0.05 & <0.005 \\\hline 06/30/05 & <1.0 & <0.005 & <0.015 & 0.072 & <0.05 & <0.005 \\\hline 07/08/05 & <1.0 & <0.005 & <0.010 & 0.074 & <0.05 & <0.005 \\\hline 06/14/05 & <1.0 & <0.005 & <0.010 & 0.074 & <0.020 & <0.005 \\\hline 06/14/05 & <1.0 & <0.005 & <0.015 & 0.30 & <0.05 & <0.005 \\\hline 06/23/05 & <1.0 & <0.005 & <0.015 & 0.30 & <0.05 & <0.005 \\\hline 06/30/05 & <1.0 & <0.005 & <0.015 & 0.18 & <0.05 & <0.005 \\\hline 06/30/05 & <1.0 & <0.005 & <0.015 & 0.18 & <0.05 & <0.005 \\\hline 07/08/05 & <1.0 & <0.005 & <0.015 & 0.42 & <0.05 & <0.005 \\\hline 06/14/05 & <1.0 & <0.005 & <0.015 & 0.42 & <0.05 & <0.005 \\\hline 07/08/05 & <1.0 & <0.005 & <0.015 & 0.42 & <0.05 & <0.005 \\\hline 06/23/05 & <1.0 & <0.005 & <0.015 & 0.41 & <0.05 & <0.005 \\\hline 06/23/05 & <1.0 & <0.005 & <0.015 & 0.41 & <0.05 & <0.005 \\\hline 06/23/05 & <1.0 & <0.005 & <0.015 & 0.41 & <0.05 & <0.005 \\\hline 06/23/05 & <1.0 & <0.005 & <0.015 & 0.41 & <0.05 & <0.005 \\\hline 06/30/05 & <1.0 & <0.005 & <0.015 & 0.38 & <0.05 & <0.005 \\\hline 06/30/05 & <1.0 & <0.005 & <0.015 & 0.38 & <0.05 & <0.005 \\\hline 06/30/05 & <1.0 & <0.005 & <0.015 & 0.38 & <0.05 & <0.005 \\\hline 07/08/05 & <5.0 & <0.005 & <0.015 & 0.38 & <0.020 & <0.005 \\\hline 07/08/05 & <5.0 & <0.005 & <0.015 & 0.38 & <0.020 & <0.005 \\\hline 07/08/05 & <5.0 & <0.005 & <0.015 & 0.38 & <0.020 & <0.005 \\\hline 07/08/05 & <5.0 & <0.005 & <0.015 & 0.38 & <0.020 & <0.005 \\\hline 07/08/05 & <5.0 & <0.005 & <0.015 & 0.38 & <0.020 & <0.005 \\\hline 07/08/05 & <5.0 & <0.005 & <0.015 & 0.38 & <0.020 & <0.005 \\\hline 07/08/05 & <5.0 & <0.005 & <0.015 & 0.38 & <0.020 & <0.005 \\\hline 07/08/05 & <5.0 & <0.005 & <0.015 & 0.38 & <0.020 & <0.005 \\\hline 07/08/05 & <5.0 & <0.005 & <0.015 & 0.38 & <0.020 & <0.005 \\\hline 07/08/05 & <5.0 & <0.005 & <0.015 & 0.38 & <0.020 & <0.005 & <0.005 \\\hline 07/08/05 & <5.0 & <0.005 & <0.015 & 0.015 & 0.38 & <0.020 & <0.005 & <0.005 \\\hline$	< 0.05	< 0.005	< 0.05	0.39	<0.015 ^b	<0.005 a	<1.0	06/23/05	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.05	< 0.005	< 0.05	0.41	<0.015 ^b	<0.005 a	<1.0	06/30/05	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.020	< 0.005	< 0.020	0.41	<0.015 b	<0.005 a	<1.0	07/08/05	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.05	-0.005	-0.05	0.14	0.015 b	0.005 8	-1.0	05/12/05	MW
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								-	MW-8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		+						-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0.020	<0.003	<0.020	0.074	<0.010	<0.005	<1.0	07/08/03	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.05	< 0.005	< 0.05	0.30	<0.015 b	<0.005 a	<1.0	05/12/05	MW-9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.05	< 0.005	< 0.05	0.26	<0.015 b	<0.005 a	<1.0	06/14/05	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.05	< 0.005	< 0.05	0.18		<0.005 a	<1.0	06/23/05	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.05	< 0.005	< 0.05	0.42		<0.005 a	<1.0	06/30/05	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.020	< 0.005	< 0.020	0.12	<0.015 b	<0.005 a	<1.0	07/08/05	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
06/23/05 <1.0 <0.005 a <0.015 b 0.38 <0.05 <0.005 06/30/05 <1.0									MW-10
06/30/05 <1.0 <0.005 a <0.015 b 0.38 <0.05 <0.005 07/08/05 <5.0								06/14/05	
07/08/05 <5.0 <0.005 a <0.015 b 0.38 <0.020 <0.005		< 0.005							
	< 0.05	< 0.005	< 0.05	0.38			<1.0	06/30/05	
MW-11 05/12/05 <1.0 <0.005 a <0.015 b 0.25 <0.005 <0.005	< 0.020	< 0.005	< 0.020	0.38	<0.015 b	<0.005 a	< 5.0	07/08/05	
VI.000 VI.010 VI.000 VI.000 VI.000	< 0.05	< 0.005	< 0.05	0.25	<0.015 b	<0.005 a	<1.0	05/12/05	MW-11
MW-12 05/12/05 <1.0 <0.005 ^a <0.015 ^b 0.24 <0.05 <0.005	<0.05	<0.005	<0.05	0.24	-0.015 b	40 005 ^a	<1.0	05/12/05	MW 12

Abbreviations:

ug/L = Micrograms per liter

mg/L = Milligrams per liter

Notes:

- <1.0 = Analyte not detected at indicated detection limit.
 - a = The specific analysis for hexavalent chromium performed within 24 hours yielded a detection limit of 0.010 mg/L. Subsequent and separate analysis for total chromium using Zeeman graphite furnace (EPA 200.9) resulted in no detection of chromium at a detection limit below 0.005 mg/L. Hexavalent chromium is not present at a level above 0.005 mg/L.
 - b = The sample required a dilution due to a sample matrix interference. The dilution resulted in a slight increase in the reported detection limit.
 - --- = Not analyzed

į For Office Use Only COUNTY OF SONOMA - DEPARTMENT OF HEALTH SERVICES DEPT. OF HEALTH SVCS Amount paid ENVIRONMENTAL HEALTH DIVISION 475 Aviation Blvd., Suite 220, Santa Rosa, CA 95403 Receipt number Phone (707) 565-6565 Fax (707) 565-6525 www.sonpite-county (707) Payment date Rev. code APPLICATION FOR DRILLING PERMIT Site ID# for Regional Board Lead/Environmental Assess Permit # Well type: [] Monitoring well [] Recovery extraction well [] Boring [] Injection well [] Destruct [] Environmental assessment [] Soil gas survey [] Direct push [MAir sparging/venting [] Remediation well [] Other Ozona Well depth ++ Boring depth_ +h, SP-12 # Off-site well/boring 0 Submit legal right-of-entry/off-site well address/encroachment permit On-site Address Facility Name On-site Owner ____ State <u>CA</u> z_{lp} 95 Responsible Party Phone 707 - 545 -License #/Type State A Zip 9 C-57 License # Runadiation Type of work: [] Initlal Investigation _#Wells [\Subsequent Investigation #Wells [] Destruct Groundwater investigation due to: [X] Underground tank [] Surface Impoundment [] Environmental assessment [] Surface disposal practice—specify involved industry_ [] Other - 25P1-0.02 Chemical constituents TPH-995 Disposal method for soll cuttings 1514 10-0/11 Disposal method for development water Orums Drilling method HSA Method of drill equip, rinsate containment 1010ms If destroying a well, abandonment method_ Submit plot plan of wells in relation to all sewer or septic lines, 0.0 0013430 WELL PER 294,00

is well to be constructed within: 100 feet of a septic tank or leachfield?

[]Yes [X]No

X Yes | INo

25 feet of any private sanitary sewer line? [] Yes [X] No

04/12/05

TTLAMT 294.00 CHECKS 294.00

CHANCE

323B #2 10:55

11.03

In addition, all monitoring wells must include identification system affixed to interior surface: 1) Well Identification 2) Well type 3) Well depth 4) Well casing diameter 5) Perforated Intervals

50 feet of any sanitary sewer line?

Well identification number and well type shall be affixed to the exterior surface security structure.

DEPT. OF HEALTH SVCS

APR 1 1 2005

ENVIRONMENTAL HEALTH DIVISION

For Office Use Only Address 3464 Santa Rosa
Slb 1D# 1849 Permit #466

I hereby agree to comply with all laws and regulations of the County of Sonoma and State of California pertaining to water well construction. I will telephone (707) 565-6565, 48 hours in advance, to notify the Environmental Health Specialist when completing or destroying a well. I will furnish the Director of Health Services and the owner a legible copy of the State Water Well Driller's Report within 15 days; and a copy of the Summary Report, including sample results, should be received by this Department within 90 days in order to obtain final approval on this well permit, I acknowledge that the application will become a permit only after site approval and payment of fee, I understand that this permit is not transferable and expires one year from date of issuance.

the application will become a permit only after site approval and payment of fee, I understand that this permit is from date of issuance.	not tran	sferable and	expires one	year
Date	e <u>4</u>	-7-0	5_	
Signature of Well Driller—no proxies				
Signature of Weil Driller—no proxies Insurance Carrier Alas Ka National Expiration Da	te	5-1-0	2	· · · · · · · · · · · · · · · · · · ·
Once all wells/borings are installed, submit a Well Driller's Log and/or Summary Report to complete permit produced to the complete permit permit produced to the complete permit	ess.			
Indicate on attached plot plan the exact location of well(s) with respect to the following items: property lines, wat pattern, roads, existing wells, sewer main and laterals and private sewage disposal systems or other sources of DIMENSIONS. The velidity of this permit depends upon the accuracy of the information provided by the application.	contam	is or water co Ination or pol	urses drain: ution, INCL	ige UDE
Conditions of permit:				
			•	
	`*			
			-	
	····		***************************************	
* * * * * * * * * * * * * *	*	Sp op	⋄	430
FOR OFFICE USE ONLY - ENVIRONMENTAL HEALTH DIVISION				
Permit approved by Ough In			4 20	1,05
Permit approved by		Date		
Constr. approved by Observed? []Yes []No Well:	#	Date	·	/
RWQCB / LOP approval		Date	/	

WINZLER & KELLY CONSULTING ENGINEERS

Site-Specific Ozone Sparge Point Installation Procedures Wiggins Property 3454 Santa Rosa Avenue, Santa Rosa, California

1. Objective

Install 12 ozone sparge points.

2. Background

Ozone sparge points will be installed in accordance with the procedures described herein.

3. Personnel Required and Responsibilities

<u>Staff Geologist</u>: An experienced staff geologist (SG) under the direction of a California Professional Geologist (PG) or Engineer (PE) will ensure that the ozone sparge points will be properly installed and oversee the logging of the borings. The SG will be responsible for complying with the procedures regarding installation of the ozone sparge points and documentation.

<u>Drilling Technicians</u>: Drilling technicians from a drilling company holding a C-57 license will perform the ozone sparge point installation.

4. Equipment Required

- Rotary auger drilling rig
- Level C and D safety equipment
- Boring Log Form / Munsell Soil Color Charts
- Laboratory provided sample containers
- Sample labels / Indelible marker
- Disposal gloves
- Ice chest with ice
- ASTM Classification Guide
- Wash equipment
- Organic Vapor meter (OVM)

5. Procedure

• Winzler & Kelly obtain all required permits prior to installing the ozone sparge points. A Site-Specific Safety Plan detailing site hazards, site safety, and control was prepared prior to any field work. Underground Services Alert (USA) was notified of the planned work at least 48 hours prior to drilling.

- An OVM will be used during the drilling and sampling activities to screen for the presence of Volatile Organic Compounds (VOCs).
- A HSA drilling rig equipped with 8-inch diameter augers will be used to install the ozone sparge points. After the desired depth has been reached the ozone sparge point is constructed by lowering a 1/2-inch diameter stainless steel riser pipe with 3 feet of 1-inch 0.020 slotted stainless steel well screen threaded at the bottom through the HSAs. The attached sparge assembly is lowered through the HSA annulus to the bottom of the boring. A sand filter pack is installed from the total depth to approximately one foot above the ozone screen. A two-foot thick bentonite seal is then installed above the ozone sand filter pack and neat cement and bentonite slurry is then installed in the annulus to form a well seal.
- The ozone sparge point borings were installed at varying depths base on the lithology. Soil samples were collected for lithologic descriptions only by driving an 18-inch long, split-spoon sampler at specified intervals.
- Soil types were classified and logged using the ASTM Visual Manual Procedure (D 2488-93) and Munsell Soil Color Charts.
- The lithology, moisture, density, color, sample identification, OVM measurements, and well construction details were recorded on the boring logs as appropriate.
- All ozone sparge points were constructed using 1/2-inch diameter stainless steel tubing and 3 feet of 1-inch diameter 0.020-slotted stainless steel well screen. A threaded cap was attached to the bottom of the casing. Ozone sparge point construction details will be documented on the boring log.
- A sand pack of #2/12 washed sand was used for the slotted well screen. Sand was poured through the HSAs as the augers were removed from the boring.
- A seal of bentonite clay was extended a minimum of 2 feet above the ozone sand pack. A cement/bentonite slurry, not exceeding 5 percent bentonite, was placed by tremie pipe to 1.5 feet below the ground surface. The top of the stainless steel casing was approximately 2 inches below grade.
- A duct tape was placed over the top of the casing during well completion to prevent debris from entering the wells.
- The wells were protected by 18-inch flush-mounted traffic boxes set in concrete. The tops of the traffic boxes were set above grade with a gently sloping concrete rim.
- Upon completion of the ozone sparge point installations, each point was secured by bolting down the lid of the flush-mounted traffic box.

I certify that I have not disposed of any liquid or hazardous waste.

West Contra Costa Sanitary Landfill, Inc.

Öffice (510) 231-4156 Landfill (510) 233-4330
Foot of Parr Boulevard, Richmond, CA 94801

TICKET: 772237
DATE: 05/19/2005
TIME: 15:25 - 16:00

CUSTOMER: 9997 / Credit Canducestamer & TRAILER: ORIGIN GROUP: 54 / Santa Romacense TRUCK: TRUCK TYPE F PRINT MA / Non App NA / Non App COMMENT: <u>AMOUNT</u> 作。本色問題 WINZLER QUANTITY WASTE 293, 99 CD / Construction Damo g 23.87 Mandatory Fees CASH IN: \$ 317.26 DHEMOE: 488 317, 26

	NON-HAZARDOUS	1. Generator's US EPA	ID No.	2. Page 1	3. Docume	nt Number	
	WASTE MANIFEST			of 1 ¹	NH-	303	119
 	4. Generator's Name and Mailing Address						
	OVIA 1909AA CCCI		ø				
	garta rosa	CA 95403	;		$((\ \))$	=2) \{\}	•
	Generator's Phone		Ç.				
	5. Transporter Company Name		US EPA ID Number	7. Transporte	r Phone		
	CLEFFWATER EPHIROPHREHTAL	· I	CAR00000701.	.)	510 47	N1740	
	8. Designated Facility Name and Site Address		US EPA ID Number	10. Facility's	Phone	······································	
	ALMSO INDEPENDENT OIL						
	SOO2 ARCHER STREET	81.mm				4	
G	ACMSO CY	95602	CAL 000161743	,	510 470	L-1740	
GENER	11. Waste Shipping Name and Description		â	12. C	ontainers Type	13. Total Quantity	14, Unit Wt/Vol
R	a. PURGE WATER, HON THE	KZAROCHIS WASTE	HOURS	(v1 0110	G
A T O					, , , , , , , , , , , , , , , , , , , ,	· VIIO	نب ا
R	b.						
			• •				
	15. Special Handling Instructions and Additional Ir	formation	······································	Handling Cod	des for Waste	s Listed Above	<u> </u>
				11a	a	11b	<u>.</u>
	118 ,				-		
	WEAR THE 24 HEAR ENERGER WIGHING PROPERTY 3454 SAN KELLYI OG-22-0	CY FIRK HAPAARI TA ROSA AVE BAN DS-008 - 00	ia Rosa, Ca 95-107 (VIIIRZI.	.SR &			
	16, GENERATOR'S CERTIFICATION: I certify the	materials described above		or federal regulations fo	r reporting pro	per disposal of Haza	ardous Waste.
\	Printed/Typed Name		Signature				
R	1 0/4/8		The second secon			Month ジン	Day Year
S S	17. Transporter Acknowledgement of Receipt of N	faterials				3,7 (,7)	100 800
P	Printed/Typed Name		Signature				
TRANSPORTER	DAVID MOR	Missin	- and	-71/01	4500	Month うん	Day Year
R.	18. Discrepancy Indication Space					, , , , , , , , , , , , , , , , , , ,	
F	na constante de la constante d						
A							
1 L	1						
1							
T Y	19. Facility Owner or Operator: Certification of rec	eipt of waste materials c	overed by this manifest except as r	noted in Item 18.			
Т	19. Facility Owner or Operator: Certification of rec Printed/Typed Name	eipt of waste materials c	overed by this manifest except as n	noted in Item 18.			

Report Date: May 12, 2005

Pon Xayasaeng Winzler & Kelly Consulting Engineers 495 Tesconi Circle, Suite 9 Santa Rosa, CA 95401-4696

LABORATORY REPORT

Project Name: Wiggins Property 0259805001.32002

Lab Project Number: 5050405

This 4 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D. Laboratory Director

TPH Gasoline & BTEX in Water

Lab #	Sample ID	Analysis	Result (ug/	/L) RDL (ug/L)
29606	SP-12	TPH/Gasoline	e ND	50
		Benzene	ND	0.5
		Toluene	ND	0.5
		Ethyl Benzen	ne ND	0.5
		Xylenes	ND	1.5
Date Sampled: Date Received:	05/03/05 05/04/05		06/05 A 5030/8015M/8020	QC Batch #: _5504

Lab #	Sample ID	Analysis	Result (ug	/L) RDL (ug/L)
29607	SP-11	TPH/Gasoline	3,300	50
		Benzene	58	0.5
		Toluene	6.6	0.5
		Ethyl Benzene	3.7	0.5
		Xylenes	10	1.5
Date Sampled: Date Received:	05/03/05 05/04/05	Date Analyzed: 05/06 Method: EPA	5/05 5030/8015M/8020	QC Batch #: _5504

Lab #	Sample ID	Analy	/sis	Result (ug	/L) RDL	_ (ug/L)
29608	SP-10	TPH/Gaso	oline	7,000	500)
		Benzene		110	5	5.0
		Toluene		6.4	5	5.0
		Ethyl Ben	zene	200	5	5.0
		Xylenes		46	15	5
Date Sampled:	05/03/05	Date Analyzed:	05/06/05		QC Batch #: _5	5504
Date Received:	05/04/05	Method:	EPA 5030/80)15M/8020		

Lab Project #: 5050405

Lab #	Sample ID	Analysis	Result (ug/L) RDL (ug/L)
29609	SP-9	TPH/Gasoline	40,000	2,500
		Benzene	30	20
		Toluene	ND	20
		Ethyl Benzene	ND	20
		Xylenes	43	60
Date Sampled: Date Received:	05/03/05 05/04/05	Date Analyzed: 05/06/05, Method: EPA 5030	05/10/05 0/8015M/8020	QC Batch #: _5504

Lab #	Sample ID	Analysis	Result (ug/L	_) RDL (ug/L)
29610	SP-8	TPH/Gasoline	18,000	500
		Benzene	18	5.0
		Toluene	9.3	5.0
		Ethyl Benzene	40	5.0
		Xylenes	20	15
Date Sampled: Date Received:	05/03/05 05/04/05	Date Analyzed: 05/06/ Method: EPA 5	05 030/8015M/8020	QC Batch #:

Lab Project #: 5050405

LABORATORY QUALITY ASSURANCE REPORT

QC Batch #: 5504 **Lab Project #:** 5050405

Sample		Result
ID	Compound	(ug/L)
MB	TPH/Gas	ND
MB	MTBE	ND
MB	Benzene	ND
MB	Toluene	ND
MB	Ethyl Benzene	ND
MB	Xylenes	ND

Sample		Result	Spike	%
ID	Compound	(ug/L)	Level	Recv.
CMS	TPH/Gas		NS	
CMS	Benzene	9.49	10.0	94.9
CMS	Toluene	9.62	10.0	96.2
CMS	Ethyl Benzene	9.32	10.0	93.2
CMS	Xylenes	28.4	30.0	94.6
	CMS CMS CMS CMS CMS	ID Compound CMS TPH/Gas CMS Benzene CMS Toluene CMS Ethyl Benzene	IDCompound(ug/L)CMSTPH/GasCMSBenzene9.49CMSToluene9.62CMSEthyl Benzene9.32	ID Compound (ug/L) Level CMS TPH/Gas NS CMS Benzene 9.49 10.0 CMS Toluene 9.62 10.0 CMS Ethyl Benzene 9.32 10.0

	Sample		Result	Spike	%	
Sample #	ID	Compound	(ug/L)	Level	Recv.	RPD
29537	CMSD	TPH/Gas		NS		
	CMSD	Benzene	9.45	10.0	94.5	0.43
	CMSD	Toluene	9.51	10.0	95.1	1.1
	CMSD	Ethyl Benzene	9.32	10.0	93.2	0.03
	CMSD	Xylenes	28.4	30.0	94.6	0.03

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

Lab Project #: 5050405

PO Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128 110 Liberty Street Petaluma, CA 94952 Fax: (707) 769-8093

Report Date: June 8, 2005

Pon Xayasaeng Winzler & Kelly Consulting Engineers 495 Tesconi Circle, Suite 9 Santa Rosa, CA 95401-4696

LABORATORY REPORT

Project Name: Wiggins Property 0259805001.3200

Lab Project Number: 5051206

This 24 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D. Laboratory Director

PO Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128

TPH Gasoline in Water

Lab #	Sample ID	Analysis	Result (ug/	/L) RDL (ug/L)
29782	DW-3521	TPH/Gasoline	ND	50
29783	DW-3415	TPH/Gasoline	ND	50
29784	DW-3450	TPH/Gasoline	ND	50
29785	MW-8	TPH/Gasoline	ND	50
29786	MW-12	TPH/Gasoline	ND	50
29787	MW-11	TPH/Gasoline	ND	50
29788	MW-9	TPH/Gasoline	ND	50
29789	MW-5	TPH/Gasoline	320	50
29790	MW-10	TPH/Gasoline	8,800	500
Date Sampled: Date Received:	05/12/05 05/12/05	Date Analyzed: 05/13/05 Method: EPA 5030/8	3015M	QC Batch #: _5535

Lab Project #: 5051206

CA Lab Accreditation #: 2303

TPH Diesel & Motor Oil in Water

Lab # 29785	Sample ID MW-8	Analysis TPH/Diesel Motor Oil		Result (ug/L) ND ND	RDL (ug/L) 50 200
Date Sampled:	05/12/05	Date Extracted:	05/13/05	QC Batch #:	5534
Date Received:	05/12/05	Date Analyzed:	05/13/05	Method:	EPA 3510/8015M

Lab # 29786	Sample ID MW-12	Analysis TPH/Diesel Motor Oil	Result (ug/L) ND ND	RDL (ug/L) 50 200
Date Sampled: Date Received:	05/12/05 05/12/05	Date Extracted: 05/13/05 Date Analyzed: 05/13/05		5534 EPA 3510/8015M

29787	Sample ID MW-11	Analysis TPH/Diesel Motor Oil	Result (ug/L) ND ND	RDL (ug/L) 50 200
Date Sampled: Date Received:		Date Extracted: 05/13/05 Date Analyzed: 05/13/05		5534 EPA 3510/8015M

Lab # 29788	Sample ID MW-9	Analy TPH/Dies Motor Oil	el	Result (ug/L) ND ND	RDL (ug/L) 50 200
Date Sampled:	05/12/05	Date Extracted:	05/13/05	QC Batch #:	5534
Date Received:	05/12/05	Date Analyzed:	05/13/05		EPA 3510/8015M

Lab #	Sample ID	Analysis	Result (ug/L)	RDL (ug/L)	
29789	MW-5	TPH/Diesel	54	50	
		Motor Oil	ND	200	
Date Sampled: Date Received:	05/12/05 05/12/05	Date Extracted: 05/13/05 Date Analyzed: 05/13/05		5534 EPA 3510/8015M	

29790	Sample ID MW-10	TPH/Dies Motor Oil	el	Result (ug/L) 8,000 (1) ND	RDL (ug/L) 50 200
Date Sampled: Date Received:		Date Extracted: Date Analyzed:	05/13/05 05/13/05	QC Batch #: Method:	5534 EPA 3510/8015M

⁽¹⁾ The sample chromatogram exhibits a pattern that suggests both weathered gasoline and diesel are simultaneously present.

Volatile Hydrocarbons by GC/MS in Water

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
29782	DW-3521	benzene		ND	1.0
		toluene		ND	1.0
		ethyl benzene		ND	1.0
		m,p-xylene		ND	1.0
		o-xylene		ND	1.0
		acetone		ND	1.0
		Oxygenated Gasoli tert-butyl alcohol (TE methyl tert-butyl eth di-isopropyl ether (E ethyl tert-butyl ether tert-amyl methyl eth	BA) er (MTBE) DIPE) (ETBE)	ND ND ND ND ND	25 1.0 1.0 1.0 1.0
Su	rrogates	Result (ug/L)	% Recovery	Acceptanc	e Range (%)
toluene-d ₈	oromethane (20) (20) orobenzene (20)	20.9 20.0 19.5	105 100 97.5	70 – 130 70 – 130 70 – 130	
Date Sampl Date Receiv		Date Analyzed: 05/1 Method: EPA	3/05 8260B	QC Batch #	: 5533

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
29783	DW-3415	benzene		ND	1.0
		toluene		ND	1.0
		ethyl benzene	ethyl benzene		1.0
		m,p-xylene o-xylene		ND	1.0
				ND	1.0
		acetone		ND	1.0
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (Ti	ЗА)	ND	25
		methyl tert-butyl eth	er (MTBE)	ND	1.0
		di-isopropyl ether (D	OIPE)	ND	1.0
		ethyl tert-butyl ether	r (ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sui	rrogates	Result (ug/L)	% Recovery	Acceptanc	e Range (%)
dibromofluc	promethane (20)	20.8	104	70	– 130
toluene-d ₈ (20.3	102		– 130
4-bromofluo	orobenzene (20)	19.6	98.0	70 – 130	
Date Sample Date Receive		Date Analyzed: 05/1 Method: EPA	3/05 8260B	QC Batch #	: 5533

Lab # Sample ID		Compound Name		Result (ug/L)	RDL (ug/L)
29784	DW-3450	toluene ethyl benzene m,p-xylene o-xylene		ND	1.0
				ND	1.0
				ND	1.0
				ND	1.0
				ND	1.0
	acetone			ND	1.0
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (Ti	3A)	ND	25
		methyl tert-butyl eth	ner (MTBE)	ND ND	1.0
		di-isopropyl ether (DIPE)		1.0
		ethyl tert-butyl ethe	r (ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sur	rogates	Result (ug/L)	% Recovery	Acceptano	ce Range (%)
dibromofluo	romethane (20)	20.7	104	70	– 130
toluene-d ₈ (2		20.2	101	70 – 130	
4-bromofluo	probenzene (20)	19.5	97.5	70	– 130
Date Sample			6/05, 05/13/05 8260B	QC Batch #	: <u>5533</u>

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
29785	MW-8	benzene		ND	1.0
		toluene		ND	1.0
		ethyl benzene		ND	1.0
		m,p-xylene		ND	1.0
		o-xylene		ND	1.0
		acetone		ND	1.0
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (Ti	3A)	ND	25
		methyl tert-butyl eth	ner (MTBE)	ND	1.0
		di-isopropyl ether (D	DIPE)	ND	1.0
		ethyl tert-butyl ether	r (ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sur	rogates	Result (ug/L)	% Recovery	Acceptanc	e Range (%)
dibromofluo	romethane (20)	20.7	104	70 -	- 130
toluene-d ₈ (2		20.1 101		70 – 130	
4-bromofluo	probenzene (20)	19.4	97.0	70 – 130	
Date Sample Date Receive		Date Analyzed: 05/13/05 Method: EPA 8260B		QC Batch #	_5533

Lab Project #: 5051206 CA Lab Accreditation #: 2303

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
29786	MW-12	benzene		ND	1.0
		toluene		ND	1.0
		ethyl benzene m,p-xylene o-xylene acetone		ND	1.0
				ND	1.0
				ND	1.0
				ND	1.0
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (TBA)		ND	25
		methyl tert-butyl eth	er (MTBE)	ND	1.0
		di-isopropyl ether (D	OIPE)	ND	1.0
		ethyl tert-butyl ether	r (ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sur	rogates	Result (ug/L)	% Recovery	Acceptano	ce Range (%)
dibromofluo	romethane (20)	20.7	104	70	– 130
toluene-d ₈ (2		20.2	101	70 – 130	
4-bromofluo	probenzene (20)	19.7	98.5	70 – 130	
Date Sample Date Receive		Date Analyzed: 05/1 Method: EPA	3/05 8260B	QC Batch #	: 5533

Lab#	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
29787	MW-11	benzene		ND	1.0
		toluene		ND	1.0
		ethyl benzene		ND	1.0
		m,p-xylene		ND	1.0
		o-xylene		ND	1.0
		acetone		ND	1.0
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (Ti	BA)	ND	25
		methyl tert-butyl eth	er (MTBE)	ND	1.0
		di-isopropyl ether (OIPE)	ND	1.0
		ethyl tert-butyl ethe	r (ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sur	rogates	Result (ug/L)	% Recovery	Acceptance	ce Range (%)
dibromofluo	romethane (20)	20.7	104	70	– 130
toluene-d ₈ (2	20)	20.3	102	70 – 130	
4-bromofluo	robenzene (20)	19.3	96.5	70	– 130
Date Sample Date Receive		Date Analyzed: 05/1 Method: EPA	3/05 8260B	QC Batch #	: _5533

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
29788	MW-9	benzene		ND	1.0
		toluene		ND	1.0
		ethyl benzene		ND	1.0
		m,p-xylene		ND	1.0
		o-xylene		ND	1.0
		acetone		ND	1.0
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (Ti	3A)	ND	25
		methyl tert-butyl eth	ner (MTBE)	ND	1.0
		di-isopropyl ether (DIPE)	ND	1.0
		ethyl tert-butyl ethe	r (ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sur	rogates	Result (ug/L)	% Recovery	Acceptano	ce Range (%)
dibromofluoi	romethane (20)	20.6	103	70	– 130
toluene-d ₈ (2	20)	20.3	102	70 – 130	
4-bromofluo	robenzene (20)	19.6	98.0	70	– 130
Date Sample Date Receive			3/05 8260B	QC Batch #	: _5533

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
29789	MW-5	benzene	benzene		1.0
		toluene		ND <mark>(2)</mark> ND	1.0
		ethyl benzene		ND	1.0
		m,p-xylene		ND	1.0
		o-xylene		ND	1.0
		acetone		ND	1.0
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (Ti	BA)	ND	25
		methyl tert-butyl eth	ner (MTBE)	ND	1.0
		di-isopropyl ether (DIPE)	ND	1.0
		ethyl tert-butyl ethe	r (ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sur	rogates	Result (ug/L)	% Recovery	Acceptanc	e Range (%)
dibromofluo	romethane (20)	20.2	101	70	– 130
toluene-d ₈ (2	20)	20.1	101	70 – 130	
4-bromofluo	probenzene (20)	19.4	97.0	70	– 130
Date Sample Date Receive		Date Analyzed: 05/1 Method: EPA	3/05 8260B	QC Batch #	: _5533

(2) The following additional compound was detected: 1,2-dichloroethane (1.0 ug/L).

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
29790	MW-10	benzene		55	10
		toluene		17	10
		ethyl benzene		310	10
		m,p-xylene		400	10
		o-xylene		26	10
		acetone		ND	10
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (TE	BA)	ND	250
		methyl tert-butyl eth	er (MTBE)	ND	10
		di-isopropyl ether (D	OIPE)	ND	10
		ethyl tert-butyl ether	r (ETBE)	ND	10
		tert-amyl methyl eth	er (TAME)	ND	10
Sur	rogates	Result (ug/L)	% Recovery	Acceptan	ce Range (%)
	romethane (20)	20.2	101	-	- 130
toluene-d ₈ (20.1 101		70 – 130 70 – 130	
4-51011101100	probenzene (20)	19.9	99.5	70	- 130
Date Sample Date Receive		<u> </u>	3/05 8260B	QC Batch #	#: <u>5533</u>

Hexavalent Chromium in Water

Lab # 29785	Sample ID MW-8	Analysis Hexavalent Chromium (Cr+6)		Result (mg/L) ND (3)	RDL (mg/L) 0.005
Date Sampled: Date Received:		Date Analyzed: Method:	05/13/05 EPA 7196A	QC Batch #:	5532

Lab # 29786	Sample ID MW-12		nalysis Chromium (Cr+6)	Result (mg/L) ND (3)	RDL (mg/L) 0.005
Date Sampled: Date Received:		,		QC Batch #:	5532

Lab #	Sample ID	Analysis		Result (mg/L)	RDL (mg/L)
29787	MW-11	Hexavalent Chromium (Cr+6)		ND (3)	0.005
Date Sampled:	05/12/05	Date Analyzed:	05/13/05	QC Batch #:	5532
Date Received:	05/12/05	Method:	EPA 7196A	<u> </u>	

Lab #	Sample ID	Analysis		Result (mg/L)	RDL (mg/L)	
29788	MW-9	Hexavalent Chromium (Cr+6)		ND (3)	0.005	
Date Sampled: Date Received:		Date Analyzed: Method:	05/13/05 EPA 7196A	QC Batch #:	5532	

Lab # 29789	Sample ID		Analysis Hexavalent Chromium (Cr+6)		RDL (mg/L) 0.005
29709	MW-5	nexavalent C	nromium (Cr+6)	ND (3)	0.003
Date Sampled: Date Received:		Date Analyzed: Method:	05/13/05 EPA 7196A	QC Batch #:	5532

Lab # 29790	Sample ID MW-10		nalysis Chromium (Cr+6)	Result (mg/L) ND (3)	0.005
Date Sampled Date Received		Date Analyzed: Method:	05/13/05 EPA 7196A	QC Batch #:	5532

⁽³⁾ The specific analysis for hexavalent chromium performed within 24 hours yielded a detection limit of 0.010 mg/L. Subsequent and separate analysis for total chromium using Zeeman graphite furnace (EPA 200.9) resulted in no detection of chromium at a detection limit well below 0.005 mg/L. Hexavalent chromium is not present at the level of 0.005 mg/L.

CA Lab Accreditation #: 2303

Bromate and Bromide in Water

Lab #	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)
29785	MW-8	Bromate (BrO ₃ ⁻¹)	ND (4)	0.015
		Bromide (Br ⁻¹)	0.14	0.020
Date Sample		Date Analyzed: 05/16/05 Methods: EPA 300 (IC	QC Batc	h #: _5530

Lab #	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)
29786	MW-12	Bromate (BrO ₃ ⁻¹)	ND (4)	0.015
		Bromide (Br ⁻¹)	0.24	0.020
Date Sample		Date Analyzed: 05/16/05 Methods: EPA 300 (IC)	QC Batc	h #: <u>5530</u>

Lab #	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)
29787	MW-11	Bromate (BrO ₃ ⁻¹)	ND (4)	0.015
		Bromide (Br ⁻¹)	0.25	0.020
Date Sample		Date Analyzed: 05/16/05 Methods: EPA 300 (IC)	QC Bato	h #: _5530

Lab #	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)	
29788	MW-9	Bromate (BrO ₃ ⁻¹)	romate (BrO ₃ ⁻¹) ND (4)		
		Bromide (Br ⁻¹)	0.30	0.020	
Date Sample Date Receive		Date Analyzed: 05/16/05 Methods: EPA 300 (IC)	QC Batc	h #: <u>5530</u>	

Lab #	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)
29789	MW-5	Bromate (BrO ₃ ⁻¹)	ND (4)	0.015
		Bromide (Br ⁻¹)	0.32	0.020
Date Sampled	05/40/05	Date Analyzed: 05/16/05 Methods: EPA 300 (IC)	QC Batch	n #:5530

Lab #	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)	
29790	MW-10	Bromate (BrO ₃ ⁻¹)	ND (4)	0.015	
		Bromide (Br ⁻¹)	0.41	0.020	
Date Sampled: Date Received:	05/12/05 05/12/05	Date Analyzed: 05/16/0 Methods: EPA 30		ch #: <u>5530</u>	

⁽⁴⁾ The sample required a dilution due to a sample matrix interference. The dilution resulted in a slight increase in the reported detection limit.

Metals in Water

Lab #	Sample ID	Analy	sis	Result (mg/L)	RDL (mg/L)
29785	MW-8	Molybdenu	ım (Mo)	ND	0.05
		Selenium (Se)	ND	0.005
		Vanadium	(V)	ND	0.05
Date Sampled: Date Received:	05/12/05 05/12/05	Date Digested: Date Analyzed:	05/13/05 05/13/05	QC Ba	atch #:5531
Methods:	EPA 3010/6010,	EPA 200.9			

Lab #	Sample ID	Analy	sis	Result (mg/L)	RDL (mg/L)
29786	MW-12	Molybdenu	ım (Mo)	ND	0.05
		Selenium (Se)	ND	0.005
		Vanadium	(V)	ND	0.05
Date Sampled:	05/12/05	Date Digested:	05/13/05	QC Ba	tch #: 5531
Date Received:	05/12/05	Date Analyzed:	05/13/05		
Methods:	EPA 3010/6010,	EPA 200.9			

Lab #	Sample ID	Analys	sis	Result (mg/L)	RDL (mg/L)
29787	MW-11	Molybdenum (Mo)		ND	0.05
		Selenium (Se)		ND	0.005
		Vanadium	(V)	ND	0.05
Date Sampled:	05/12/05	Date Digested:	05/13/05	QC Ba	atch #: <u>5531</u>
Date Received:	05/12/05	Date Analyzed:	05/13/05		
Methods:	EPA 3010/6010,	EPA 200.9			

Lab #	Sample ID	Analys	sis	Result (mg/L)	RDL (mg/L)
29788	MW-9	Molybdenu	m (Mo)	ND	0.05
		Selenium (Se)	ND	0.005
		Vanadium ((V)	ND	0.05
Date Sampled: Date Received: Methods:	05/12/05 05/12/05 EPA 3010/6010,	Date Digested: Date Analyzed: EPA 200.9	05/13/05 05/13/05	QC B	atch #: <u>5531</u>

Lab #	Sample ID	Analy	sis	Result (mg/L)	RDL (mg/L)
29789	MW-5	Molybdenum (Mo) Selenium (Se)		ND	0.05
				ND	0.005
		Vanadium	(V)	ND	0.05
Date Sampled:	05/12/05	Date Digested:	05/13/05	QC B	satch #: _ <u>5531</u>
Date Received:	05/12/05	Date Analyzed:	05/13/05		
Methods:	EPA 3010/6010,	EPA 200.9			

Lab #	Sample ID	Analy	sis	Result (mg/L)	RDL (mg/L)
29790	MW-10	Molybdenu	ım (Mo)	ND	0.05
		Selenium (Se)	ND	0.005
		Vanadium	(V)	ND	0.05
Date Sampled: Date Received:	05/12/05 05/12/05	Date Digested: Date Analyzed:	05/13/05 05/13/05	QC Ba	atch #:5531
Methods:	EPA 3010/6010,	•	03/13/03		

LABORATORY QUALITY ASSURANCE REPORT

QC Batch #: 5535 **Lab Project #:** 5051206

Sample ID	Compound	Result (ug/L)
MB	TPH/Gas	ND
MB	MTBE	ND
MB	Benzene	ND
MB	Toluene	ND
MB	Ethyl Benzene	ND
MB	Xylenes	ND

	Sample		Result	Spike	%
Sample #	ID	Compound	(ug/L)	Level	Recv.
29782	CMS	TPH/Gas		NS	
	CMS	Benzene	9.10	10.0	91.0
	CMS	Toluene	9.39	10.0	93.9
	CMS	Ethyl Benzene	9.82	10.0	98.2
	CMS	Xylenes	30.0	30.0	99.9

	Sample		Result	Spike	%	
Sample #	ID	Compound	(ug/L)	Level	Recv.	RPD
29782	CMSD	TPH/Gas		NS		
	CMSD	Benzene	8.68	10.0	86.8	4.8
	CMSD	Toluene	9.02	10.0	90.2	4.0
	CMSD	Ethyl Benzene	9.40	10.0	94.0	4.4
	CMSD	Xylenes	27.4	30.0	94.1	8.9

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

QC Batch #: 5534 **Lab Project #:** 5051206

Sample ID MB	Compound TPH/Diesel	Result (ug/L) ND			
Sample ID LCS	Compound TPH/Diesel	Result (ug/L) 2,060	Spike Level 2,730	% Recv. 75.5	
Sample ID LCSD	Compound TPH/Diesel	Result (ug/L)	Spike Level	% <u>Recv.</u> 74.0	RPD 2.0

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

QC Batch #: 5533 **Lab Project #:** 5051206

Sample ID	Compound Name	Result (ug/L)
MB	1,1-dichloroethene	ND
MB	benzene	ND
MB	trichloroethene	ND
MB	toluene	ND
MB	chlorobenzene	ND

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	20.2	101	70 – 130
toluene-d ₈ (20)	20.2	101	70 – 130
4-bromofluorobenzene (20)	19.9	99.5	70 – 130

Sample	Sample	Compound Name	Result	Spike	%
#	ID		(ug/L)	Level	Recv.
29783	CMS	1,1-dichloroethene	19.8	25.0	79.2
	CMS	benzene	23.1	25.0	92.4
	CMS	trichloroethene	22.8	25.0	91.2
	CMS	toluene	23.8	25.0	95.2
	CMS	chlorobenzene	24.0	25.0	96.0

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	20.5	103	70 – 130
toluene-d ₈ (20)	20.1	101	70 – 130
4-bromofluorobenzene (20)	19.1	95.5	70 – 130

Sample #	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.	RPD
29783	CMSD	1,1-dichloroethene	19.9	25.0	79.6	0.50
	CMSD	benzene	23.2	25.0	92.8	0.43
	CMSD	trichloroethene	22.6	25.0	90.4	0.88
	CMSD	toluene	24.0	25.0	96.0	0.84
	CMSD	chlorobenzene	24.1	25.0	96.4	0.42

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%
dibromofluoromethane (20)	20.4	102	70 – 130
toluene-d ₈ (20)	20.2	101	70 – 130
4-bromofluorobenzene (20)	19.2	96.0	70 – 130

 $\label{eq:mb} \begin{aligned} \text{MB} = \text{Method Blank}; \ \ \text{LCS} = \text{Laboratory Control Sample}; \ \ \text{CMS} = \text{Client Matrix Spike}; \ \ \text{CMSD} = \text{Client Matrix Spike} \ \ \text{Duplicate} \\ \text{NS} = \text{Not Spiked}; \ \ \text{OR} = \text{Over Calibration Range}; \ \ \text{NR} = \text{No Recovery} \end{aligned}$

QC Batch #: 5532 Lab Project #: 5051206

Sample		Result
ID	Compound	(mg/L)
MB	Hexavalent Chromium (Cr+6)	ND

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

QC Batch #: 5537/5531 **Lab Project #:** 5051206

Sample		Result
ID	Compound	(mg/L)
MB	Vanadium	ND
MB	Selenium	ND
MB	Molybdenum	ND

Sample		Result	Spike	%
ID	Compound	(mg/L)	Level	Recv.
LCS	Vanadium	0.481	0.500	96.2
LCS	Selenium	0.0227	0.025	90.8
LCS	Molybdenum	0.509	0.500	102

Sample		Result	Spike	%	
ID	Compound	(mg/L)	Level	Recv.	RPD
LCSD	Vanadium	0.494	0.500	98.8	2.7
LCSD	Selenium	0.0243	0.025	97.2	8.0
LCSD	Molybdenum	0.518	0.500	104	1.8

 $\label{eq:mb} \begin{subarray}{ll} MB = Method Blank; \ LCS = Laboratory \ Control \ Sample; \ CMS = Client \ Matrix \ Spike; \ CMSD = Client \ Matrix \ Spike; \ CMSD = Client \ Matrix \ Spike; \ Duplicate \ NS = Not \ Spiked; \ OR = Over \ Calibration \ Range; \ NR = No \ Recovery \end{subarray}$

Analytical Sciences

GLOBAL ID: TOUCY FUL 531 COOLER TEMPERATURE

Shuetee

OF

CHAIN OF CUSTODY

Analytical Sciences
P.O. Box 750336, Petaluma, CA 94975-0336
110 Liberty Street, Petaluma, CA 94952
(707) 769-3128

0710000	Eax (707) 769-8093	and and and and	A COMMENT OF THE PARTY OF THE P

			0.
MOIT INEOPMATION	WINZLE	WINZLER & KELLY PROJECT NAME: UCIGAMS 47	Wiggins AY
CEIENT IN CRIMATION	WINZIED	8. KELLY DROJECT NUMBER	2
	MINTER	MINISTER & NELLI I NOSECI NOMBER: 02598001.	7157805021.
COMPANY NAME: WINZLER & RELLY CONSULTING ENGINEERS	CALLO O ALACOLIT	TABLE (-1111	GEOTPACKED EDE.
	JURNAROUND	DRIVAROUND TIME ECHECK ONE)	GEOI KACKEN EDI
ADDRESS: 493 LESCON CIRCLE, SUITE 3	4 HON CLAN	a Year Character has 2d har took de GLOBAL ID: TOUC	GLOBAL ID: TUEO
SANTA ROSA, CA 95401-4696	MOBILE LAB	1. mag	-
CONTACT: Pless HS Smile Buchale Pro	SAME DAY	24 Hours	COOLER IEM
PHONE#: (707) 523-1010	48 Hours	72 Hours	Alman J.
FAX #: (707) 527-8679	5 DAYS	NORMAL	000 E
			PAGE

	ш	2	N	M	35	10	B	M	00	Z	d			
	LAB SAMPLE	29282	29782	29783	229784	29785	29786	486 PC	29788	297	2979			
	COMMENTS	* Please add	acetone inder	R PA 8240B	* Please provid	Chromitonen	0	7 HUSE SEF	Hex chrome	Limit @ 2 Sugle	and Bromate.	2 <10 un/L		
	VSe, Mc, Branish	- in				×	×.	X	X	X	X	_		
	2007 413 206 473 200 473				-	×	×	×	×	X	×			
	T PIF AND											-		
	PESTICIDES / PCB'S EPA 8081 / 8141/ 8082													
S	TRPH / TOG SM 5520F / EPA 418.1M													
ANALYSIS	SEMI-VOLATILE HYDROCARBONS OTSE AST													1
AN	CHLORINATED SOLVENTS EPA 8010 / EPA 8260B								,					
	OXYGENATED FUEL ADDITIVES M0328 A93			-						0			ES	
	BTEX & OXYGENATES FPA \$256B	×	×	×	X	×	X	X	×	×	×		ATUR	- 1
	VOLATILE HYDROCARBONS TENA 825608 (FULL LIST)												SIGNATURES	
	NOTOR OIL MOTOR AGE METOR AGE		č		٠.	×	×	X	X	X	X			and
	TPH/GAS/BTEX E-MTBE EPA 8015N/8020	×	×	X	X	X	X	×	X	X	×			4.80
	PRESV.	7	7	~	7.	5//	1/4	W/W	2/	2/	N/X			Xay
	CONT.	4	41	717	44	40/4ch	HV/4%	4 1/400	4 Math	1/4° to	STEP STEP			Pon
	MATRIX	3	3	3	3	J. 88. W	13/20	M	3	3	.3			BY:
	TIME		(N. H	4h.01	15.03	13,30	3:35	13:50	13:51	14:07	3:00			SAMPLED BY:
	DATE	N X	5/13/K	-							>			S,
	CLIENT SAMPLE I.D.	7	170-3521	Dio-34/5	DW-3450	MW-8	KI-MW	- mw	MW. G	MW - 5	MW-11			
	ITEM	5	2	6	4	2	9	7	80	on	10	=		

PO Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128 RECEIVED BY LABORATORY:

40

512/05

RELINAUISHED BY:

Report Date: July 14, 2005

Pon Xayasaeng Winzler & Kelly Consulting Engineers 495 Tesconi Circle, Suite 9 Santa Rosa, CA 95401-4696

LABORATORY REPORT

Project Name: Wiggins Property 0259805001.32003

Lab Project Number: 5062309

This 11 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D. Laboratory Director

PO Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128

Volatile Hydrocarbons by GC/MS in Water

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
30426	MW-5	benzene		ND	1.0
		toluene		ND	1.0
		ethyl benzene		ND	1.0
		m,p-xylene		ND	1.0
		o-xylene		ND	1.0
		acetone		ND	1.0
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (Ti	3A)	ND	25
		methyl tert-butyl eth	ner (MTBE)	ND	1.0
		di-isopropyl ether (DIPE)	ND	1.0
		ethyl tert-butyl ethe	r (ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sui	rrogates	Result (ug/L)	% Recovery	Acceptanc	e Range (%)
dibromofluc	promethane (20)	19.2	96.0	70 -	– 130
toluene-d ₈ ((20)	19.8	99.0	70 – 130 70 – 130	
4-bromofluo	probenzene (20)	18.4	92.0	70 -	– 130
Date Sample			7/05 8260B	QC Batch #	5615

Lab # Sample ID		Compound	Name	Result (ug/L)	RDL (ug/L)
30427	MW-9	benzene		ND	1.0
		toluene		ND	1.0
		ethyl benzene		ND	1.0
		m,p-xylene		ND	1.0
		o-xylene	•		1.0 1.0
		acetone	ND		
		Oxygenated Gasol	ine Additives		
tert-butyl alcohol (T			BA)	ND	25
		methyl tert-butyl ether (MTBE)		ND	1.0
		di-isopropyl ether (DIPE)	ND	1.0
		ethyl tert-butyl ethe	r (ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sur	rogates	Result (ug/L)	% Recovery	Acceptanc	ce Range (%)
dibromofluo	romethane (20)	18.7	93.5	70	– 130
toluene-d ₈ (2	20)	19.5	97.5	70 – 130 70 – 130	
4-bromofluo	robenzene (20)	18.0	90.0	70	– 130
Date Sample			4/05 8260B	QC Batch #	: _5615

Lab Project #: 5062309 CA Lab Accreditation #: 2303

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)	
30428	MW-10	benzene		160	10	
		toluene		48	10	
		ethyl benzene		360	10	
		m,p-xylene		710	10	
		o-xylene		46	10	
		acetone		ND	10	
		Oxygenated Gasol	ine Additives			
tert-butyl alcohol (TBA)			BA)	ND	25	
		methyl tert-butyl eth	er (MTBE)	ND	10	
		di-isopropyl ether (D	OIPE)	ND	10	
		ethyl tert-butyl ether	r (ETBE)	ND	10	
		tert-amyl methyl eth	er (TAME)	ND	10	
Sur	rogates	Result (ug/L)	% Recovery	Acceptan	ce Range (%)	
dibromofluo	romethane (20)	19.0	95.0	70	70 – 130	
toluene-d ₈ (2	20)	19.8	99.0	70 – 130		
4-bromofluo	probenzene (20)	18.8	94.0	70	– 130	
Date Sample		Date Analyzed: 06/2 Method: EPA	7/05 8260B	QC Batch #	: <u>5615</u>	

Lab Project #: 5062309 CA Lab Accreditation #: 2303

Lab # Sample ID		Compound	Name	Result (ug/L)	RDL (ug/L)
30429	MW-8	benzene		ND	1.0
	_	toluene		ND	1.0
		ethyl benzene		ND	1.0
		m,p-xylene		ND	1.0
		o-xylene		ND	1.0
		acetone	ND	1.0	
		Oxygenated Gasol	ine Additives		
	tert-butyl alcohol (TBA)			ND	25
		methyl tert-butyl ether (MTBE)		ND	1.0
		di-isopropyl ether (OIPE)	ND	1.0
		ethyl tert-butyl ethe	r (ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sur	rogates	Result (ug/L)	% Recovery	Acceptance	ce Range (%)
dibromofluo	romethane (20)	18.7	93.5	70	– 130
toluene-d ₈ (2	20)	19.5	97.5	70 – 130	
4-bromofluo	robenzene (20)	17.9	89.5	70	– 130
Date Sample		Date Analyzed: 06/2 Method: EPA	4/05 8260B	QC Batch #	: _5615

CA Lab Accreditation #: 2303

Hexavalent Chromium in Water

Lab # 30426	Sample ID MW-5		nalysis Chromium (Cr+6)	Result (mg/L) ND (1)	RDL (mg/L) 0.005
Date Sampled: Date Received:		Date Analyzed: Method:	06/23/05 EPA 7196A	QC Batch #:	5612

Lab #	Sample ID	Analysis		Result (mg/L)	RDL (mg/L)
30427	MW-9	Hexavalent C	Hexavalent Chromium (Cr+6)		0.005
Date Sampled: Date Received:		Date Analyzed: Method:	06/23/05 EPA 7196A	QC Batch #:	5612

Lab # 30428	Sample ID MW-10		nalysis Chromium (Cr+6)	Result (mg/L) ND (1)	RDL (mg/L) 0.005
Date Sampled: Date Received:		Date Analyzed: Method:		QC Batch #:	5612

Lab # 30429	Sample ID MW-8		nalysis Chromium (Cr+6)	Result (mg/L) ND (1)	RDL (mg/L) 0.005
Date Sampled: Date Received:		Date Analyzed: Method:	06/23/05 EPA 7196A	QC Batch #:	5612

⁽¹⁾ The specific analysis for hexavalent chromium performed within 24 hours yielded a detection limit of 0.010 mg/L. Subsequent and separate analysis for total chromium using Zeeman graphite furnace (EPA 200.9) resulted in no detection of chromium at a detection limit well below 0.005 mg/L. Hexavalent chromium is not present at the level of 0.005 mg/L.

Bromate and Bromide in Water

Lab # 30426	Sample ID MW-5	Analysis Bromate (BrO ₃ ⁻¹) Bromide (Br ⁻¹)	Result (mg/L) ND (2) 0.39	RDL (mg/L) 0.015 0.030
Date Sampled: Date Received:	06/23/05 06/23/05	Date Analyzed: 06/24/05 Methods: EPA 300 (IC		#: <u>5613</u>

Lab #	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)
30427	MW-9	Bromate (BrO ₃ ⁻¹)	ND (2)	0.015
		Bromide (Br ⁻¹)	0.18	0.030
Date Sampled Date Received		Date Analyzed: 06/24/05 Methods: EPA 300 (IC)	QC Batch	n #:5613

Lab #	Sample ID	Analys	sis	Result (mg/L)	RDL (mg/L)
30428	MW-10	Bromate (BrO ₃ ⁻¹)		ND	(2)	0.015
		Bromide (B	r ⁻¹)	0.3	8	0.030
Date Sampled: Date Received:		Date Analyzed: Methods:	06/24/05 EPA 300 (IC)		QC Batch	#: _5613

Lab #	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)
30429	MW-8	Bromate (BrO ₃ ⁻¹)	ND (2)	0.015
		Bromide (Br ⁻¹)	0.072	0.030
Date Sampled Date Received		Date Analyzed: 06/24/05 Methods: EPA 300 (IC)		#: _5613

(2) The sample required a dilution due to a sample matrix interference. The dilution resulted in a slight increase in the detection limit.

Metals in Water

Lab # 30426	Sample ID MW-5	Vanadiun Selenium Molybder	(Se)	Result (mg/L) ND ND ND	RDL (mg/L) 0.05 0.005 0.005
Date Sampled: Date Received: Method:	06/23/05 06/23/05 EPA 3010/6010, 2	Date Digested: Date Analyzed: 200.9	06/24/05 06/24/05	QC Bat	ch #: <u>5614, 5598</u>

Lab # Sample ID		Analysis		Result (mg/L)	RDL (mg/L)	
30427	MW-9	Vanadium (v) Selenium (se)		ND ND	0.05	
		Molybder	` '	ND	0.005 0.05	
Date Sampled:	06/23/05	Date Digested:	06/24/05	QC Ba	tch #: 5614, 5598	
Date Received: Method:	06/23/05 EPA 3010/6010, 2	Date Analyzed:	06/24/05			

Lab #	# Sample ID Analysis		Result (mg/L)	RDL (mg/L)	
30428	MW-10	Vanadium (V) Selenium (Se)		ND ND	0.05 0.005
		Molybder	` '	ND	0.05
Date Sampled: Date Received:	06/23/05 06/23/05	Date Digested: Date Analyzed:	06/24/05 06/24/05	QC Batch	#: _5614, 5598_
Method:	EPA 3010/6010, 2	200.9			

Lab #	Sample ID MW-8		lysis	Result (mg/L) ND	RDL (mg/L)
30429	IVIVV-O	Vanadiun Selenium Molybder	(Se)	ND ND	0.05 0.005 0.05
Date Sampled: Date Received: Method:	06/23/05 06/23/05 EPA 3010/6010, 2	Date Digested: Date Analyzed: 200.9	06/24/05 06/24/05	QC Bato	h #: <u>5614, 5598</u>

CA Lab Accreditation #: 2303

LABORATORY QUALITY ASSURANCE REPORT

QC Batch #: 5615 **Lab Project #:** 5062309

Sample ID	Compound Name	Result (ug/L)
MB	1,1-dichloroethene	ND
MB	benzene	ND
MB	trichloroethene	ND
MB	toluene	ND
MB	chlorobenzene	ND

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	18.9	94.5	70 – 130
toluene-d ₈ (20)	19.2	96.0	70 – 130
4-bromofluorobenzene (20)	17.8	89.0	70 – 130

Sample #	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.
30385	CMS	1,1-dichloroethene	23.9	25.0	95.6
	CMS	benzene	23.4	25.0	93.6
	CMS	trichloroethene	22.1	25.0	88.4
	CMS	toluene	23.7	25.0	94.8
	CMS	chlorobenzene	24.2	25.0	96.8

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%
dibromofluoromethane (20)	18.5	92.5	70 – 130
toluene-d ₈ (20)	19.5	97.5	70 – 130
4-bromofluorobenzene (20)	18.1	90.5	70 – 130

Sample #	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.	RPD
30385	CMSD	1,1-dichloroethene	24.0	25.0	96.0	0.42
	CMSD	benzene	23.5	25.0	94.0	0.43
	CMSD	trichloroethene	22.0	25.0	88.0	0.45
	CMSD	toluene	23.8	25.0	95.2	0.42
	CMSD	chlorobenzene	24.2	25.0	96.8	0.0

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	18.5	92.5	70 – 130
toluene-d ₈ (20)	19.5	97.5	70 – 130
4-bromofluorobenzene (20)	17.9	89.5	70 – 130

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

QC Batch #:	5612	Lab Project #:	5062309

Compound

Sample

ID

Lab Project #: 5062309

Sample		Result	Spike	%
MB	Hexavalent Chromium (Cr+6)	ND		

<u>ID</u>	Compound	(mg/L)	Level	Recv.	
LCS F	Hexavalent Chromium (Cr+6)	1.03	1.00	103	

Sample		Result	Spike	%	
ID	Compound	(mg/L)	Level	Recv.	RPD
LCSD	Hexavalent Chromium (Cr+6)	1.04	1.00	104	0.97

Result

(mg/L)

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

CHAIN OF CUSTODY LAB PROJECT NUMBER: 506 2307

Analytical Sciences
P.O. Box 750336, Petaluma, CA 94975-0336
110 Liberty Street, Petaluma, CA 94952
(707) 769-3128
Fax (707) 769-8093

COMPANY NAME:

0	AWLINSIS	i e	
PAGE OF	NORMAL X	5 DAYS	FAX #: (707) 527-8679
	72 Hours	48 Hours	PHONE#: (707) 523-1010
My To	24 Hours	SAME DAY	CONTACT: LESULTS: Dama; Directains: Par
GLOBAL ID. J CW C J 1 0 - CJ		MOBILE LAB	SANTA ROSA, CA 95401-4696
GEOTRACKER EDF: A V N	UNDITURE (checkone)	A DISTRICT	ADDRESS: 495 TESCONI CIRCLE, SUITE 9
5			NY NAME: WINZLER & KELLY CONSULTING ENGINEERS
5259805001,32603	WINZLER & KELLY PROJECT NUMBER:	WINZ	
10/59ins Property	WINZLER & KELLY PROJECT NAME:	\$	RAILEND WEST TO SELECTION OF THE SECOND SECO

İ		l													4					
ITEM	CLIENT SAMPLE I.D.	DATE SAMPLED	TIME	MATRIX	# CONT.	PRESV.	TPH/GAS/BTEX 6 MTBE EPA 8015M/8020	HTH DIESEL / MOTOR OIL M& S015M AGE S015M	HYDROCARBONS BTEX & OXYGENATES BTEX & OXYGENATES	+ 65 SCAVENOEPS EPA 8260B	FUEL ADDITIVES EPA 8260M CHLORINATED SOLVENTS	SEMI-VOLATILE SEMI-VOLATILE HYDROCARBONS TER 8270	M1.814 ATB / TOG SM 5520F / EPA 418.1M	EPA 8081 / 8141/ 8082	S LUFT METALS S LUFT METALS F PIF AND	16x Chrone 16x Chrone 1914 +93	0109 H13	V, Se, Mo, Bro	COMMENTS	LAB SAMPLE #
-	MW-5	6/23/05/10:03	50:01	3	±	γ//				X						\ \	×		x Please add	30426
7	MW-9		01:0		_),,										-		#C	Store to	30127
က	KW-10		10:15															B	EPA 8240B 30425	30428
4	NW-8	\	10.30	7	→	→			İ	7						>	3			34 29
9																_		X	A Please Set	
ဖ																_		\$	tex change	
7																		1 1	1579 tim	7/
®									-					-		<u> </u>		lara	a Parioust	
6																	_	ø	L10011/	
۶																	_	_	100	
F																	\vdash			
		Š	SAMPLED BY	BY:	Par 1	aun	17/2	12	\										AND AND AND AND AND AND AND AND AND AND	
<u> </u>	RELINQUISHED BY:	4		\	18	last last	,	Pic Pic			Recen	RECEIVED BY LABORATORY:	# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ATORY:	J V	0		/9	17368	10.7
Sign	SIGNATURE)		•	DATE			T#E			SIGNATURE	TRE .	+					DATE	TE (TIME
ŀ																				

Report Date: July 15, 2005

Pon Xayasaeng Winzler & Kelly Consulting Engineers 495 Tesconi Circle, Suite 9 Santa Rosa, CA 95401-4696

LABORATORY REPORT

Project Name: Wiggins 0259805001.32003

Lab Project Number: 5063003

This 10 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D. Laboratory Director

PO Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128

Volatile Hydrocarbons by GC/MS in Water

Lab#	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
30595	MW-8	benzene		ND	1.0
		toluene		ND	1.0
		ethyl benzene		ND	1.0
		m,p-xylene		ND	1.0
		o-xylene		ND	1.0
		acetone		ND	1.0
		Oxygenated Gasoli	ine Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth	er (MTBE)	ND	1.0
		di-isopropyl ether (D	OIPE)	ND	1.0
		ethyl tert-butyl ether	(ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sui	rrogates	Result (ug/L)	% Recovery	Acceptanc	ce Range (%)
toluene-d ₈ (oromethane (20) (20) orobenzene (20)	21.0 19.7 19.9	105 98.5 99.5	70	– 130 – 130 – 130
Date Sample Date Receive		Date Analyzed: 07/0 Method: EPA	1/05 8260B	QC Batch #	: _5631

Lab Project #: 5063003

CA Lab Accreditation #: 2303

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
30596	MW-5	benzene		5.3	1.0
		toluene		1.3	1.0
		ethyl benzene		ND	1.0
		m,p-xylene		ND	1.0
		o-xylene		ND	1.0
		acetone		ND	1.0
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth	ner (MTBE)	ND	1.0
		di-isopropyl ether (D	DIPE)	ND	1.0
		ethyl tert-butyl ether	r (ETBE)	ND	1.0
		tert-amyl methyl ether (TAME)		ND	1.0
Su	rrogates	Result (ug/L)	% Recovery	Acceptanc	e Range (%)
dibromofluo	promethane (20)	20.3	102	70 -	- 130
toluene-d ₈ (, ,	19.9	99.5		- 130
4-bromoflu	orobenzene (20)	20.3	102	70 -	– 130
Date Sampl Date Receiv			1/05 8260B	QC Batch #:	5631

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
30597	MW-9	benzene		ND	1.0
	_	toluene		ND	1.0
		ethyl benzene		ND	1.0
		m,p-xylene		ND	1.0
		o-xylene		ND	1.0
		acetone		ND	1.0
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (Ti	BA)	ND	25
		methyl tert-butyl eth	er (MTBE)	ND	1.0
		di-isopropyl ether (OIPE)	ND	1.0
		ethyl tert-butyl ethe	r (ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sur	rogates	Result (ug/L)	% Recovery	Acceptance	ce Range (%)
dibromofluo	romethane (20)	20.6	103	70	– 130
toluene-d ₈ (2	20)	19.6	98.0	70	– 130
4-bromofluo	robenzene (20)	20.2	101	70	– 130
Date Sample		Date Analyzed: 07/0 Method: EPA	1/05 8260B	QC Batch #	: _5631

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
30598	MW-10	benzene		140	20
		toluene		42	20
		ethyl benzene		270	20
		m,p-xylene		490	20
		o-xylene		37	20
		acetone		ND	20
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (Ti	3A)	ND	500
		methyl tert-butyl eth	•	ND	20
		di-isopropyl ether (D		ND	20
		ethyl tert-butyl ether	r (ETBE)	ND	20
		tert-amyl methyl eth	ND	20	
Su	rrogates	Result (ug/L)	% Recovery	Acceptan	ce Range (%)
dibromofluo	promethane (20)	19.3	96.5	70	– 130
toluene-d ₈ (` ,	19.9	99.5		– 130
4-bromoflu	orobenzene (20)	20.5	103	70	– 130
Date Sampl Date Receiv			1/05 8260B	QC Batch #	#: <u>5631</u>

Hexavalent Chromium in Water

Lab # 30595	Sample ID MW-8		nalysis Chromium (Cr+6)	Result (mg/L) ND (1)	RDL (mg/L) 0.005
Date Sampled: Date Received:	06/30/05 06/30/05	Date Analyzed: Method:	06/30/05 EPA 7196A	QC Batch #:	5633

Lab # 30596	Sample ID MW-5		nalysis Chromium (Cr+6)	Result (mg/L) ND (1)	RDL (mg/L) 0.005
Date Sampled: Date Received:		Date Analyzed: Method:	06/30/05 EPA 7196A	QC Batch #:	5633

Lab # 30597	Sample ID MW-9		nalysis Chromium (Cr+6)	Result (mg/L) ND (1)	RDL (mg/L) 0.005
Date Sampled: Date Received:		Date Analyzed: Method:	06/30/05 EPA 7196A	QC Batch #:	5633

Lab #	Sample ID	Ar	nalysis	Result (mg/L)	RDL (mg/L)
30598	MW-10	Hexavalent C	Chromium (Cr+6)	ND (1)	0.005
Date Sampled: Date Received:	06/30/05 06/30/05	Date Analyzed: Method:	06/30/05 EPA 7196A	QC Batch #:	5633

(1) The specific analysis for hexavalent chromium performed within 24 hours yielded a detection limit of 0.010 mg/L. Subsequent and separate analysis for total chromium using Zeeman graphite furnace (EPA 200.9) resulted in no detection of chromium at a detection limit well below 0.005 mg/L. Hexavalent chromium is not present at the level of 0.005 mg/L.

Bromate and Bromide in Water

Lab # 30595	Sample ID MW-8	Analysis Bromate (BrO ₃ ⁻¹) Bromide (Br ⁻¹)	Result (mg/L) ND 0.074	RDL (mg/L) 0.010 0.020
Date Sampled Date Received		Date Analyzed: 07/01/05 Methods: EPA 300 (IC)	QC Bato	ch #: <u>5647</u>

Lab #	Sample ID	Analysis	Result	(mg/L) RDL (mg/L)
30596	MW-5	Bromate (BrO	-1) ND	(2) 0.015
		Bromide (Br ⁻¹)	0.41	0.030
Date Sampled: Date Received:	06/30/05 06/30/05		/01/05 PA 300 (IC)	QC Batch #:5647

Lab #	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)
30597	MW-9	Bromate (BrO ₃ ⁻¹)	ND (2)	0.015
		Bromide (Br ⁻¹)	0.42	0.030
Date Sampled: Date Received:	00/00/00	Date Analyzed: 07/01/05 Methods: EPA 300 (IC)	QC Bato	h #:

Lab#	Sample ID	Analys	is	Result (mg/L)	RDL (mg/L)
30598	MW-10	Bromate (B	rO ₃ ⁻¹)	ND (2)	0.015
		Bromide (B	r ⁻¹)	0.38	0.030
Date Sampled: Date Received:	06/30/05 06/30/05	Date Analyzed: Methods:	07/01/05 EPA 300 (IC)	QC Ba	atch #: 5647

(2) The sample required a dilution due to the presence of a matrix interference. The dilution resulted in a slight increase in the reported detection limit.

Metals in Water

Sample ID	<u>Ana</u>	alysis	Result (mg/L)	RDL (mg/L)
MW-8	Vanadiun	n (V)	ND	0.05
	Selenium	(Se)	ND	0.005
		` '	ND	0.05
06/30/05	Date Digested:	06/24/05	QC Ba	atch #: 5614
06/30/05	Date Analyzed:	06/24/05		
	MW-8	MW-8 Vanadiun Selenium Molybder 06/30/05 Date Digested:	MW-8 Vanadium (V) Selenium (Se) Molybdenum (Mo) Date Digested: 06/24/05	MW-8 Vanadium (V) ND Selenium (Se) ND Molybdenum (Mo) ND Ob/30/05 Date Digested: 06/24/05 QC Ba

Lab #	Sample ID	Ana	ılysis	Result (mg/L)	RDL (mg/L)
30596	MW-5	Vanadiun	n (V)	ND	0.05
		Selenium	(Se)	ND	0.005
		Molybder	` '	ND	0.05
Date Sampled:	06/30/05	Date Digested:	06/24/05	QC B	atch #: 5614
Date Received:	06/30/05	Date Analyzed:	06/24/05		
Method:	EPA 3010/6010, 2	200.9			

Lab #	Sample ID	Ana	ılysis	Result (mg/L)	RDL (mg/L)
30597	MW-9	Vanadium (v)		ND	0.05
		Selenium	(Se)	ND	0.005
		Molybder	num (Mo)	ND	0.05
Date Sampled:	06/30/05	Date Digested:	06/24/05	QC Ba	tch #: 5614
Date Received:	06/30/05	Date Analyzed:	06/24/05		
Method:	EPA 3010/6010				

Lab # 30598	Sample ID MW-10	Vanadiun Selenium Molybder	(Se)	Result (mg/L) ND ND ND ND	RDL (mg/L) 0.05 0.005 0.05
Date Sampled: Date Received: Method:	06/30/05 06/30/05 EPA 3010/6010, 2	Date Digested: Date Analyzed: 200.9	06/24/05 06/24/05	QC Bat	tch #: <u>5614</u>

LABORATORY QUALITY ASSURANCE REPORT

Sample ID	Compound Name	Result (ug/L)
MB	1,1-dichloroethene	ND
MB	benzene	ND
MB	trichloroethene	ND
MB	toluene	ND
MB	chlorobenzene	ND

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%
dibromofluoromethane (20)	20.2	101	70 – 130
toluene-d ₈ (20)	19.9	99.5	70 – 130
4-bromofluorobenzene (20)	19.5	97.5	70 – 130

Sample	Sample	Compound Name	Result	Spike	%
#	ID		(ug/L)	Level	Recv.
30581	CMS	1,1-dichloroethene	31.1	25.0	124
	CMS	benzene	25.6	25.0	102
	CMS	trichloroethene	24.1	25.0	96.4
	CMS	toluene	24.7	25.0	98.8
	CMS	chlorobenzene	24.5	25.0	98.0

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	19.8	99.0	70 – 130
toluene-d ₈ (20)	20.0	100	70 – 130
4-bromofluorobenzene (20)	19.0	95.0	70 – 130

Sample #	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.	RPD
30581	CMSD	1,1-dichloroethene	30.6	25.0	122	1.6
	CMSD	benzene	25.6	25.0	102	0.0
	CMSD	trichloroethene	23.7	25.0	94.8	1.7
	CMSD	toluene	24.7	25.0	98.8	0.0
	CMSD	chlorobenzene	24.3	25.0	97.2	0.82

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	20.0	100	70 – 130
toluene-d ₈ (20)	19.9	99.5	70 – 130
4-bromofluorobenzene (20)	19.0	95.0	70 – 130

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

QC Batch #: 5633 **Lab Project #:** 5063003

Sample		Result
ID	Compound	(mg/L)
MB	Hexavalent Chromium (Cr+6)	ND

Sample		Result	Spike	%
ID	Compound	(mg/L)	Level	Recv.
LCS	Hexavalent Chromium (Cr+6)	1.01	1.00	101

Sample		Result	Spike	%	
ID	Compound	(mg/L)	Level	Recv.	RPD
LCSD	Hexavalent Chromium (Cr+6)	0.996	1.00	99.6	1.8

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

CHAIN OF CUSTODY

Analytical Sciences
P.O. Box 750336, Petaluma, CA 94975-0336
110 Liberty Street, Petaluma, CA 94952
(707) 769-3128
Fax (707) 769-8093

WINZLER & KELLY PROJECT NUMBER: DA59 805001. WINZLER & KELLY PROJECT NAME: 100 19911

	WINZLE	R & KELLY PROJECT NUMBER: 🖉	WINZLER & KELLY PROJECT NUMBER: DAS9805001, 32003
COMPANY NAME: WINZLER & KELLY CONSULTING ENGINEERS			
ADDRESS: 495 TESCONI CIRCLE, SUITE 9	TURNAL ON	(p. TIVE (chack and)	GEOTRACKER EDF: X Y N
SANTA ROSA, CA 95401-4696	MOBILE		GLOBAL ID: TO 66470 05 31
CONTACT: Results: Sonya ; 0/5: Pon	SAME DAY	24 Hours	COOLER I EMPERATURE
PHONE#: (707) 523-1010	48 Hours	72 Hours	,
FAX #: (707) 527-8679	5 DAYS	NORMAL	200
			PAGE OF

														Section Contracts				212	
ПЕМ	CLIENT SAMPLE I.D.	DATE SAMPLED	TIME	MATRIX	# CONT.	PRESV.	A MTBE 8 MTBE EPA 8015M28020 EPH BUESEL /	MOTOR OIL EPA 8015M AOLATILE	HYDROCARBONS EPA 8260B (FULL LIST) BTEX & OXYGENATES	EVEL ADDITIVES OXYGENATED FUEL ADDITIVES	EPA 8260M CHLORINATED SOLVENTS	EPA 8010 / EPA 8260B SEMI-VOLATILE HYDROCARBONS FPA 8270	T HRPH / TOG Mr.814 AGE / FPA 418.1M	PESTICIDES / PCB'S PESTICIDES / PCB'S PESTICIDES / PCB'S	5 LUFT METALS	DE TOURS	Bromate EPA WOIO V, Se, Ma Bron	COMMENTS	LAB SAMPLE *
-	8- mw	54:01 50/05/20	84:01	7	7	N//									ľ	×	×	Add Acetono unde	30585
2	~ win		10:39												×	X	×	8240B for each	,
£	9. WW		10:46							\ \					\vdash	X	×		30 597
4	MW - (0	>	10:30	>	>	≯			·	×					×	X	$ \times $	Set her Chrome	30 593
2												-						11mit 2 6549/1	
9											_					_	_	and Bromate	
7														<u> </u>	<u> </u>		_	1/ma/L	
8									_	_								.,	
6							-		_										
10																 _	<u> </u>		
=																			
			7																
		"	SAMPLED BY	BY:	Pan X		i Briuns	Ġ										200 March 1970 March 1	
Sign Rep.	RELINQUISHED BY: PLUM CAPVIARIMI SIGNATURE			1	G. 3	630.05	1	11.30 Time	0	•	RECEIVE	RECEIVED BY LABORATORY:	a l		0			6-30-05 PATE	56. (1)

PO Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128

Report Date: July 20, 2005

Pon Xayasaeng Winzler & Kelly Consulting Engineers 495 Tesconi Circle, Suite 9 Santa Rosa, CA 95401-4696

LABORATORY REPORT

Project Name: Wiggins Property 0259805001.32003

Lab Project Number: 5061411

This 10 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D. Laboratory Director

PO Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128

Volatile Hydrocarbons by GC/MS in Water

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
30206	MW-8	benzene		ND	1.0
		toluene		ND	1.0
		ethyl benzene		ND	1.0
		m,p-xylene		ND	1.0
		o-xylene		ND	1.0
		acetone		ND	1.0
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (Ti	ВА)	ND	25
		methyl tert-butyl eth	ner (MTBE)	ND	1.0
		di-isopropyl ether (D	DIPE)	ND	1.0
		ethyl tert-butyl ether (ETBE)		ND	1.0
		tert-amyl methyl ether (TAME)		ND	1.0
Sui	rrogates	Result (ug/L)	% Recovery	Acceptano	ce Range (%)
dibromofluc	promethane (20)	21.0	105	70 – 130	
toluene-d ₈ (20.5	103	_	– 130
4-bromofluo	orobenzene (20)	19.1	95.5	70	– 130
Date Sample Date Receive			5/05 . 8260B	QC Batch #	: _5590

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
30207	MW-5	benzene		ND	1.0
		toluene		ND	1.0
		ethyl benzene		1.0	1.0
		m,p-xylene		2.1	1.0
		o-xylene		ND	1.0
		acetone		ND	1.0
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (TE	3A)	37	25
		methyl tert-butyl eth	er (MTBE)	ND	1.0
		di-isopropyl ether (DIPE)		ND	1.0
		ethyl tert-butyl ether (ETBE) tert-amyl methyl ether (TAME)		ND	1.0
				ND	1.0
Sui	rrogates	Result (ug/L)	% Recovery	Acceptanc	e Range (%)
dibromofluc	promethane (20)	20.3	102	70 – 130	
toluene-d ₈ ((20)	20.5	103	70 -	- 130
4-bromoflud	orobenzene (20)	18.9	94.5	70 -	- 130
Date Sample Date Receive			5/05 8260B	QC Batch #:	_5590

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
30208	MW-9	benzene		ND	1.0
		toluene		ND	1.0
		ethyl benzene		ND	1.0
		m,p-xylene		ND	1.0
		o-xylene		ND	1.0
		acetone		ND	1.0
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (Ti	3A)	ND	25
		methyl tert-butyl eth	er (MTBE)	ND	1.0
		di-isopropyl ether (DIPE) ethyl tert-butyl ether (ETBE) tert-amyl methyl ether (TAME)		ND	1.0
				ND	1.0
				ND	1.0
Suri	rogates	Result (ug/L)	% Recovery	Acceptance	ce Range (%)
dibromofluor	romethane (20)	21.0	105	70	– 130
toluene-d ₈ (2	20)	20.4	102	70	– 130
4-bromofluo	robenzene (20)	18.8	94.0	70	– 130
Date Sample Date Receive		Date Analyzed: 06/1 Method: EPA	5/05 8260B	QC Batch #	: 5590

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
30209	MW-10	benzene		170	10
		toluene		50	10
		ethyl benzene		450	10
		m,p-xylene		790	10
		o-xylene		55	10
		acetone		ND	10
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (Ti	3A)	ND	250
		methyl tert-butyl eth	•	ND	10
			di-isopropyl ether (DIPE)		10
		ethyl tert-butyl ether (ETBE)		ND	10
		tert-amyl methyl ether (TAME)		ND	10
Sur	rogates	Result (ug/L)	% Recovery	Acceptan	ce Range (%)
toluene-d ₈ (romethane (20) 20) probenzene (20)	20.3 20.6 19.2	20.6 103		- 130 - 130 - 130
Date Sample		, <u> </u>	5/05 . 8260B	QC Batch #	t: <u>5590</u>

Hexavalent Chromium in Water

Lab # 30206	Sample ID MW-8		nalysis Chromium (Cr+6)	Result (mg/L) ND (1)	0.005
Date Sampled:		Date Analyzed: Method:		QC Batch #:	5586

30207	Sample ID MW-5		nalysis Chromium (Cr+6)	Result (mg/L) ND (1)	RDL (mg/L) 0.005
Date Sampled: Date Received:	06/14/05 06/14/05	Date Analyzed: Method:	06/14/05 EPA 7196A	QC Batch #:	5586

30208	Sample ID MW-9		nalysis Chromium (Cr+6)	Result (mg/L) ND (1)	RDL (mg/L) 0.005
Date Sampled Date Received		Date Analyzed: Method:	06/14/05 EPA 7196A	QC Batch #:	5586

Lab #	Sample ID	Analysis		Result (mg/L)	RDL (mg/L)
30209	MW-10	Hexavalent C	Chromium (Cr+6)	ND (1)	0.005
Date Sampled: Date Received:		Date Analyzed: Method:	06/14/05 EPA 7196A	QC Batch #:	5586

⁽¹⁾ The specific analysis for hexavalent chromium performed within 24 hours yielded a detection limit of 0.010 mg/L. Subsequent and separate analysis for total chromium using Zeeman Graphite Furnace (EPA 200.9) resulted in no detection of chromium at a detection limit below 0.005 mg/L. Hexavalent Chromium is not present at a level above 0.005 mg/L.

Bromate and Bromide in Water

Lab # 30206	Sample ID MW-8	Analysis Bromate (BrO ₃ ⁻¹) Bromide (Br ⁻¹)	Result (mg/L) ND 0.094	RDL (mg/L) 0.010 0.020
Date Sampled		Date Analyzed: 06/15/05 Methods: EPA 300 (IC)	QC Batch	n #: _5589

Lab#	Sample ID	Analysis	<u> </u>	Result (mg/L)	RDL (mg/L)
30207	MW-5	Bromate (BrO ₃ ⁻¹)		ND (2)	0.015
		Bromide (Br ⁻¹	')	0.37	0.030
Date Sampled: Date Received:		, –	06/15/05 EPA 300 (IC)	QC Batc	h #: _5589

Lab#	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)
30208	MW-9	Bromate (BrO ₃ ⁻¹)	ND (2)	0.015
		Bromide (Br ⁻¹)	0.26	0.030
Date Sampled: Date Received:	06/14/05 06/14/05	Date Analyzed: 06/15/05 Methods: EPA 300 (IC)	QC Batch	n #:5589

Lab #	Sample ID	Analys	is	Result (mg/L)	RDL (mg/L)
30209	MW-10	Bromate (BrO ₃ ⁻¹)		ND (2)	0.015
		Bromide (Br	·-1)	0.41	0.030
Date Sampled:	06/14/05	Date Analyzed:	06/15/05	QC Batcl	h #: <u>5589</u>
Date Received:	06/14/05	Methods:	EPA 300 (IC)		

(2) The sample required a dilution due to a sample matrix interference. The dilution resulted in a slight increase in the reported detection limit.

Metals in Water

Lab #	Sample ID	Analysis		Result (mg/L)	RDL (mg/L)	
30206	MW-8	Vanadium (V)		ND	0.05	
		Selenium	Selenium (Se)		0.005	
		Molybder	num (Mo)	ND	0.05	
Date Sampled:	06/14/05	Date Digested:	06/15/05	QC B	atch #: 5570	
Date Received:	06/14/05	Date Analyzed:	06/16/05		<u> </u>	

Lab #	Sample ID	Ana	lysis	Result (mg/L)	RDL (mg/L)
30207	MW-5	Vanadium (V)		ND	0.05
		Selenium	(Se)	ND	0.005
		Molybder	num (Mo)	ND	0.05
Date Sampled:	06/14/05	Date Digested:	06/15/05	QC B	atch #: 5570
Date Received:	06/14/05	Date Analyzed:	06/16/05		
Method:	EPA 3010/6010, 2	00.9			

Lab #	Sample ID Analysis Result (mg/L		Analysis		RDL (mg/L)
30208	MW-9	Vanadium (V)		ND	0.05
		Selenium	(Se)	ND	0.005
		Molybder	num (Mo)	ND	0.05
Date Sampled:	06/14/05	Date Digested:	06/15/05	QC Ba	atch #: 5570
Date Received:	06/14/05	Date Analyzed:	06/16/05		
Method:	EPA 3010/6010, 2	200.9			

Lab #	Sample ID	Ana	lysis	Result (mg/L)	RDL (mg/L)
30209	MW-10	Vanadium (v)		ND	0.05
		Selenium	ı (Se)	ND	0.005
		Molybder	num (Mo)	ND	0.05
Date Sampled:	06/14/05	Date Digested:	06/15/05	QC Ba	atch #: _5570
Date Received:	06/14/05	Date Analyzed:	06/16/05		
Method:	EPA 3010/6010,2	00.9			

LABORATORY QUALITY ASSURANCE REPORT

QC Batch #: 5590 **Lab Project #**: 5061411

Sample ID	Compound Name	Result (ug/L)
MB	1,1-dichloroethene	ND
MB	benzene	ND
MB	trichloroethene	ND
MB	toluene	ND
MB	chlorobenzene	ND

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	20.5	103	70 – 130
toluene-d ₈ (20)	20.4	102	70 – 130
4-bromofluorobenzene (20)	19.0	95.0	70 – 130

Sample #	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.
30210	CMS	1,1-dichloroethene	29.6	25.0	118
	CMS	benzene	26.3	25.0	105
	CMS	trichloroethene	25.6	25.0	102
	CMS	toluene	25.9	25.0	103
	CMS	chlorobenzene	25.2	25.0	101

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%
dibromofluoromethane (20)	20.3	102	70 – 130
toluene-d ₈ (20)	20.1	101	70 – 130
4-bromofluorobenzene (20)	19.1	95.5	70 – 130

Sample #	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.	RPD
30210	CMSD	1,1-dichloroethene	28.8	25.0	115	2.7
	CMSD	benzene	26.0	25.0	104	1.1
	CMSD	trichloroethene	25.2	25.0	101	1.6
	CMSD	toluene	25.5	25.0	101	1.6
	CMSD	chlorobenzene	25.0	25.0	100	0.80

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	20.3	102	70 – 130
toluene-d ₈ (20)	20.1	101	70 – 130
4-bromofluorobenzene (20)	19.3	96.5	70 – 130

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

QC Batch #: 5586 **Lab Project #**: 5061411

Sample		Result
ID	Compound	(mg/L)
MB	Hexavalent Chromium (Cr+6)	ND

Sample		Result	Spike	%
ID	Compound	(mg/L)	Level	Recv.
LCS	Hexavalent Chromium (Cr+6)	1.04	1.00	104

Sample		Result	Spike	%	
ID	Compound	(mg/L)	Level	Recv.	RPD
LCSD	Hexavalent Chromium (Cr+6)	1.03	1.00	103	1.2

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

	WINZLER & KELLY PROJECT NUMBER: 0259806.32003	TURNAROUND TIME (check one) GEOTRACKER EDF: X Y N	GLOBAL ID: 1040970531	-	24 Hours		5 DAYS NORMAL X PAGE OF 1	ANALYSIS	VOLATILE PER STOON STANDS SANTA BENEVILLE PER STOON STANDS SEM STOON FEP STOON THEPH I TOG SOLVERING EPR STOON THEPH I TOG SOLVERING EPR STOON THEPH I TOG SOLVERING EPR STOON THEPH I TOG SOLVERING EPR STOON THEPH I TOG SOLVERING EPR STOON THEPH I TOG SOLVERING EPR STOON THEPH I TOG SOLVERING EPR STOON THEPH STOON T		~ ` `	EPA 82008	+ A Planse Set DOLLY	Hex cyrone limit	C 25 1/9/L WM	Spirotte C. Clark	A two X fillings	Continue			SIGNATURES		RECEIVED BY LABORANGRY:	6 HOS SIGNATURE
Analytical Sciences P.O. Box 750336, Petaluma, CA 94975-0336 110 Liberty Street, Petaluma, CA 94952 (707) 769-3128 Fax (707) 769-8093	CLIENT INFORMATION	COMPANY NAME: WINZLER & KELLY CONSULTING ENGINEERS	ADDRESS: 495 TESCONI CIRCLE, SUITE 9	95401-4696	CONTACT: REGULTS STRUME, BUSHERS POT	PHONE#: (707) 523-1010	FAX #: (707) 527-8679		ITEM CLIENT SAMPLED TIME MATRIX CONT. YES/NO END PRESV. ED PRESV.	11.12 8 C. Brill Deliver 8 2.11.15	87:01	9-111V	4 V W 10:11 4 OI-WV	ın	0	7	00	6	10	1		SAMPLED BY: PON XALINS AGAN	50,	

Report Date: July 29, 2005

Pon Xayasaeng Winzler & Kelly Consulting Engineers 495 Tesconi Circle, Suite 9 Santa Rosa, CA 95401-4696

LABORATORY REPORT

Project Name: Wiggins Property 0259805001.32003

Lab Project Number: 5070805

This 11 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D. Laboratory Director

Volatile Hydrocarbons by GC/MS in Water

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)	
30849	MW-8	benzene		ND	1.0	
		toluene		ND	1.0	
		ethyl benzene		ND	1.0	
		m,p-xylene		ND	1.0	
		o-xylene		ND	1.0	
		acetone		ND	1.0	
		Oxygenated Gasol	ine Additives			
		tert-butyl alcohol (Ti	ЗА)	ND	25	
		methyl tert-butyl eth	ner (MTBE)	ND	1.0	
		di-isopropyl ether (DIPE)	ND	1.0	
		ethyl tert-butyl ethe	r (ETBE)	ND	1.0	
		tert-amyl methyl eth	er (TAME)	ND	1.0	
Sui	rrogates	Result (ug/L)	% Recovery	Acceptano	ce Range (%)	
dibromofluc	promethane (20)	20.7	104	70	– 130	
toluene-d ₈ (20.2	101	70	– 130	
4-bromofluo	orobenzene (20)	19.5	97.5	70 – 130		
Date Sample			1/05 8260B	QC Batch #	: _5656	

Lab Project #: 5070805

CA Lab Accreditation #: 2303

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)
30850	MW-5	benzene		15 <mark>(1)</mark>	1.0
		toluene		1.2	1.0
		ethyl benzene		2.0	1.0
		m,p-xylene		ND	1.0
		o-xylene		ND	1.0
		acetone		ND	1.0
		Oxygenated Gasol	ine Additives		
		tert-butyl alcohol (Ti	3A)	ND	25
		methyl tert-butyl eth	er (MTBE)	ND	1.0
		di-isopropyl ether (DIPE)	ND	1.0
		ethyl tert-butyl ether	r (ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sui	rrogates	Result (ug/L)	% Recovery	Acceptano	ce Range (%)
dibromofluc	promethane (20)	19.8	99.0	70	– 130
toluene-d ₈ (` ,	20.4	102		– 130
4-bromoflud	orobenzene (20)	19.4	97.0	70	– 130
Date Sample Date Receive			1/05 8260B	QC Batch #	: 5656

⁽¹⁾ The following additional compound was detected: 1,2-dichloroethane (1.4 ug/L).

Lab #	Sample ID	Compound	Name	Result (ug/L)	RDL (ug/L)	
30851	MW-10	benzene		220	5.0	
		toluene		81	5.0	
		ethyl benzene		460	5.0	
		m,p-xylene		900	5.0	
		o-xylene		57	5.0	
		acetone		ND	5.0	
		Oxygenated Gasol	ine Additives			
		tert-butyl alcohol (Ti	3A)	ND	120	
		methyl tert-butyl eth	ner (MTBE)	ND	5.0	
		di-isopropyl ether (D	DIPE)	ND	5.0	
		ethyl tert-butyl ether	r (ETBE)	ND	5.0	
		tert-amyl methyl eth	er (TAME)	ND	5.0	
Sur	rogates	Result (ug/L)	% Recovery	Acceptan	ce Range (%)	
dibromofluo	romethane (20)	20.3	102	70	– 130	
toluene-d ₈ (2	20)	20.6	103	70	– 130	
4-bromofluc	probenzene (20)	20.0	100	70	– 130	
Date Sample Date Receive		Date Analyzed: 07/1 Method: EPA	1/05 8260B	QC Batch #	#: <u>5656</u>	

Lab Project #: 5070805 CA Lab Accreditation #: 2303

Lab #	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)	
30852	MW-9	benzene		ND	1.0	
	_	toluene		ND	1.0	
		ethyl benzene		ND	1.0	
		m,p-xylene		ND	1.0	
		o-xylene		ND	1.0	
		acetone		ND	1.0	
		Oxygenated Gasol	ne Additives			
		tert-butyl alcohol (Ti	3A)	ND	25	
		methyl tert-butyl eth	er (MTBE)	ND	1.0	
		di-isopropyl ether (D	OIPE)	ND	1.0	
		ethyl tert-butyl ether	(ETBE)	ND	1.0	
		tert-amyl methyl eth	er (TAME)	ND	1.0	
Sui	rrogates	Result (ug/L)	% Recovery	Acceptanc	ce Range (%)	
dibromofluc	promethane (20)	19.8	99.0	70	– 130	
toluene-d ₈ (` '	20.4	102	_	– 130	
4-bromofluo	probenzene (20)	19.7	98.5	70 – 130		
Date Sample		Date Analyzed: 07/1 Method: EPA	1/05 8260B	QC Batch #	: _5656	

Lab Project #: 5070805 CA Lab Accreditation #: 2303

Hexavalent Chromium in Water

Lab # 30849	Sample ID MW-8		nalysis Chromium (Cr+6)	Result (mg/L) ND (2)	RDL (mg/L) 0.005
Date Sampled: Date Received:		Date Analyzed: Method:	07/08/05 EPA 7196A	QC Batch #:	5662

Lab #	Sample ID	Ar	nalysis	Result (mg/L)	RDL (mg/L)
30850	MW-5	Hexavalent C	Chromium (Cr+6)	ND (2)	0.005
Date Sampled: Date Received:	07/08/05 07/08/05	Date Analyzed: Method:	07/08/05 EPA 7196A	QC Batch #:	5662

Lab #	Sample ID	Ar	nalysis	Result (mg/L)	RDL (mg/L)
30851	MW-10	Hexavalent Chromium (Cr+6)		ND (2)	0.005
Date Sampled: Date Received:	07/08/05 07/08/05	Date Analyzed: Method:	07/08/05 EPA 7196A	QC Batch #:	5662

30852	Sample ID MW-9		nalysis Chromium (Cr+6)	Result (mg/L) ND (2)	RDL (mg/L) 0.005
Date Sampled: Date Received:		Date Analyzed: Method:		QC Batch #:	5662

(2) The specific analysis for hexavalent chromium performed within 24 hours yielded a detection limit of 0.010 mg/L. Subsequent and separate analysis for total chromium using Zeeman graphite furnace (EPA 200.9) resulted in no detection of chromium at a detection limit well below 0.005 mg/L. Hexavalent chromium is not present at the level of 0.005 mg/L.

Bromate and Bromide in Water

Lab # 30849	Sample ID MW-8	` .	Analysis Bromate (BrO ₃ ⁻¹) Bromide (Br ⁻¹)		ig/L)	0.010 0.020
Date Sampled: Date Received:		,	7/12/05 PA 300 (IC)		QC Batch #:	5686

Lab#	Sample ID	Analys	sis	Result (mg/L)	RDL (mg/L)
30850	MW-5	Bromate (B	Bromate (BrO ₃ ⁻¹)		0.015
		Bromide (B	r ⁻¹)	0.41	0.020
Date Sampled: Date Received:	07/08/05 07/08/05	Date Analyzed: Methods:	07/12/05 EPA 300 (IC)	QC	Batch #: <u>5686</u>

Lab#	Sample ID	Analys	sis	Result (n	ng/L)	RDL (mg/L)
30851	MW-10	Bromate (BrO ₃ ⁻¹)		ND (3)	0.015
		Bromide (B	r ⁻¹)	0.38		0.020
Date Sampled:	07/08/05	Date Analyzed:	07/12/05		QC Batch #:	5686
Date Received:	07/08/05	Methods:	EPA 300 (IC)			

Lab #	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)
30852	MW-9	Bromate (BrO ₃ ⁻¹)	ND (3)	0.015
		Bromide (Br ⁻¹)	0.12	0.020
Date Sample	ed: <u>07/08/05</u>	Date Analyzed: 07/12/05	QC Bato	sh #: <u>5686</u>
Date Receive	ed: <u>07/08/05</u>	Methods: EPA 300	(IC)	

⁽³⁾ A dilution was necessary due to a matrix interference. The dilution resulted in a very slight increase in the reported detection limit.

Metals in Water

Lab #	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)
30849	MW-8	Vanadium (V)	ND	0.020
		Selenium (Se)	ND	0.005
		Molybdenum (Mo)	ND	0.020

 Date Sampled:
 07/08/05
 Date Digested:
 07/12/05, 07/13/05
 QC Batch #:
 5652, 5663

 Date Received:
 07/08/05
 Date Analyzed:
 07/13/05

Method: EPA 3010/6010; EPA 200.9

Lab #	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)
30850	MW-5	Vanadium (V)	ND	0.020
		Selenium (Se)	ND	0.005
		Molybdenum (Mo)	ND	0.020

 Date Sampled:
 07/08/05
 Date Digested:
 07/12/05, 07/13/05
 QC Batch #:
 5652,5663

 Date Received:
 07/08/05
 Date Analyzed:
 07/13/05

 Method:
 EPA 3010/6010; EPA 200.9
 EPA 200.9

Lab #	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)
30851	MW-10	Vanadium (V)	ND	0.020
		Selenium (Se)	ND	0.005
		Molybdenum (Mo)	ND	0.020

 Date Sampled:
 07/08/05
 Date Digested:
 07/12/05,07/13/05
 QC Batch #:
 5652,5663

 Date Received:
 07/08/05
 Date Analyzed:
 07/13/05

 Method:
 EPA 3010/6010; EPA 200.9
 07/13/05

Lab #	Sample ID	Analysis	Result (mg/L)	RDL (mg/L)
30852	MW-9	Vanadium (V)	ND	0.020
		Selenium (Se)	ND	0.005
		Molybdenum (Mo)	ND	0.020

 Date Sampled:
 07/08/05
 Date Digested:
 07/12/05,07/13/05
 QC Batch #:
 5652,5663

 Date Received:
 07/08/05
 Date Analyzed:
 07/13/05

Method: EPA 3010/6010; EPA 200.9

LABORATORY QUALITY ASSURANCE REPORT

QC Batch #: 5656 **Lab Project #:** 5070805

Sample ID	Compound Name	Result (ug/L)
MB	1,1-dichloroethene	ND
MB	benzene	ND
MB	trichloroethene	ND
MB	toluene	ND
MB	chlorobenzene	ND

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	20.3	102	70 – 130
toluene-d ₈ (20)	20.3	102	70 – 130
4-bromofluorobenzene (20)	19.0	95.0	70 – 130

Sample #	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.
30738	CMS	1,1-dichloroethene	29.6	25.0	118
	CMS	benzene	24.7	25.0	98.8
	CMS	trichloroethene	23.2	25.0	92.8
	CMS	toluene	24.0	25.0	96.0
	CMS	chlorobenzene	23.0	25.0	92.0

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%
dibromofluoromethane (20)	20.1	101	70 – 130
toluene-d ₈ (20)	20.1	101	70 – 130
4-bromofluorobenzene (20)	19.0	95.0	70 – 130

Sample #	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.	RPD
30738	CMSD	1,1-dichloroethene	29.7	25.0	119	0.34
	CMSD	benzene	24.9	25.0	99.6	0.81
	CMSD	trichloroethene	23.2	25.0	92.8	0.00
	CMSD	toluene	24.2	25.0	96.8	0.83
	CMSD	chlorobenzene	22.8	25.0	91.2	0.87

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%
dibromofluoromethane (20)	20.1	101	70 – 130
toluene-d ₈ (20)	20.4	102	70 – 130
4-bromofluorobenzene (20)	19.0	95.0	70 – 130

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

QC Batch #: 5662 **Lab Project #:** 5070805

Sample		Result
ID Compound		(mg/L)
MB	Hexavalent Chromium (Cr+6)	ND

Sample		Result	Spike	%
ID	Compound	(mg/L)	Level	Recv.
LCS	Hexavalent Chromium (Cr+6)	1.03	1.00	103

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

QC Batch #: 5663 **Lab Project #:** 5070805

Sample ID	Compound	Result (mg/L)
MB	Vanadium (V)	ND
MB	Molybdenum (Mo)	ND

Sample			Result	Spike	%
Sample #	<u>ID</u>	Compound	(mg/L)	Level	Recv.
30744	CMS	Vanadium (V)	0.055	0.050	110
	CMS	Molybdenum (Mo)	0.051	0.050	103

	Sample		Result	Spike	%	
Sample #	ID	Compound	(mg/L)	Level	Recv.	RPD
30744	CMSD	Vanadium (V)	0.055	0.050	109	0.37
	CMSD	Molybdenum (Mo)	0.055	0.050	112	8.8

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

QC Batch #: 5652 **Lab Project #:** 5070805

Sample		Result
ID	Compound	(mg/L)
MB	Selenium (Se)	ND

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

IN OF CUSTODY LAB PROJECT NUMBER: 50 10805 WINZLER & KELLY PROJECT NAME: WARREN CORPUSED	GEOTRACKER EDF: X Y	GLOBAL ID! DOCY + U.S. 31	Mutee c	COC PAGE OF	;we	SUMMENTS SAMPLE SOUNDENTS SAMPLE SOUNDENTS SAMPLE SOUNDENTS SAMPLE SOUNDENTS SAMPLE	X X X Add acetore 3845	I Under EPA 30850	8200B 30851		* St Hex	Christe luce		1000/L					2 2/8/6 S 16/3/	
CHAIN OF CUSTODY LAB PROJECT NUMBER: 50 10805 WINZLER & KELLY PROJECT NAME: WARREN BOOKEN	TURNAROUND TIME Écheck one)	MOBILE LAB	SAME DAY 24 HOURS 72 HOURS	5 DAYS NORMAL X	ANALYSIS	CW 11 MEIVE? \ Eby 8081 \ 8141 \ 8082 \ Eby 8081 \ 8141 \ 8082 \ EW 8230 \ Eby 418 \ 1M \ LIBSH \ 1.000 \ EBY 8310 \ EW 8310 \ Eby 8310 \ EWIN-COPALITE \ CHTOMINYLED \ CHTOMINYLED \ COTAGNIZ \ Eby 83200 \ COTAGNIZ \ Eby 83200 \ Eby 83	人			>							SIGNATURES	Gran B		SIGNATURE
75-0336 14952 V	ONSULTING ENGINEERS		istrons: Por			CONNT. YEARS TOWN TOWN TOWN TOWN TOWN TOWN TOWN TOWN	7 W +	1 /1		7								An Xayasang 4	18/05/10	DATE ТІМЕ
Analytical Sciences P.O. Box 750336, Petaluma, CA 94975-0336 110 Liberty Street, Petaluma, CA 94952 (707) 769-3128 Fax (707) 769-8093 CLIENT INFORMATION	VINZLER & KELLY CONSULT	ADDRESS: 493 I ESCONI CIRCLE, SUITE 3 SANTA ROSA, CA 95401-4696	Parches: Songe Misshons:	(707) 527-8679		DATE TIME MATRIX	3/8/05 10.04 W	1 10:00	81:01	7 08:01								SAMPLED BY:	*	
(A) P.O. Box 110 Lib.	COMPANY NAME: WINZLER & KELLY C	ADDRESS: 4	CONTACT:			ITEM CLIENT SAMPLE I.D.	8-MW 1	2 M.W. S	3 - MM E	P-MM	5	65	80	6	10	11			RELINQUISMED BY:	SIGNATURE

Explanation for Winzler & Kelly Boring Logs

		GW	Well graded gravels or gravel-sand mixtures, little or no fines
Soils 200 sieve)	Gravels	GP	Poorly graded gravels or gravel-sand mixtures, little or no fines
≥d S No. 200	(More than half of coarse fraction > no. 4 sieve size)	GM	Sandy gravels, gravel-sand-silt mixtures
Grained f of soil > No.	no. 4 sieve size)	GC	Clayey gravels, gravel-sand-silt mixtures
e Gr		sw	Well graded sands or gravelly sands, little or no fines
Coarse Grained (more than half of soil > No.	Sands	 SP	Poorly graded sands or gravelly sands, little or no fines
O mo	(More than half of coarse fraction < no. 4 sieve size)	SM	Silty sands, sand-silt mixtures
	no. 4 sieve size)	sc	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity
S sieve)		ML	Inorganic silts and very fine sands, rock flour, silty fine sands or clayey silts with slight plasticity
Fine Grained Soils (more than half of soil < No. 200 sieve)	Silts and Clays LL = < 50	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, lean clays
ned soil < N		OL	Organic silts and organic silty clays of low plasticity
Grained nalf of soil < N		МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts
Fine	Silts and Clays	СН	Inorganic silts of high plasticity, fat clays
H (more	LL = > 50	ОН	Organic clays of high plasticity, organic silty clays, organic silts
High	ly Organic Soils	Pt	Peat and other highly organic soils

Grain Size Chart

	Range of G	irain Sizes
Classification	U.S. Standard Sieve Size	Grain Size In Millimeters
Boulders	Above 12"	Above 305
Cobbles	12" to 3"	305 to 76.2
Gravel coarse fine	3" to No. 4 3" to 3/4" 3/4"to No.4	76.2 to 7.76 76.2 to 4.76 19.1 to 4.76
Sand coarse medium fine	No. 4 to No. 200 No.4 to No. 10 No. 10 to No. 40 No. 40 to No. 200	4.76 to 0.074 4.76 to 2.00 2.00 to 0.420 0.420 to 0.074
Silt and Clay	Below No. 200	Below 0.074

Relative Density (SPT)

SANDS AND GRAVELS	BLOWS/FOOT
VERY LOOSE	0 – 4
LOOSE	4 – 10
MEDIUM DENSE	10 – 30
DENSE	32 - 50
VERY DENSE	OVER 50

Consistency (SPT)

SILTS AND CLAYS	BLOWS/FOOT
VERY SOFT	0 – 2
SOFT	2 – 4
MEDIUM STIFF	4 – 8
STIFF	8 – 16
VERY STIFF	16 – 22
HARD	OVER 32

- $\, oxtimes \,$ Initial water level measured during drilling (date in italics)
- ▼ Static water level measured after well development (date in italics)
- × Depths where soil samples were recovered

BORING LOG PROJ. NAME: Wiggins Property METHOD OF BRILLY &" Auger PROJECT NO.: 0259805001 Sheet / of / LOCATION: 3454 Santa Rosa Ave SAMPLER: Split Spoon LOGGED BY: PON Xayaskeng BORING #: 5P-1 00: . IO: DATE STARTED: 5/5/05 DATE COMPLETED: 5/5/05 BORING DIAMETER: 🔉 11 TIME: DRILLING CO.: PASCAde DVILLING INC. TIME: TOTAL DEPTH OF BORING: C57 LIC. #: 717510 ORILLER: James DEPTH TO GROUNDWATER: SURFACE CONDITIONS: DIV+ HAMMER WGT.: lbs. HAMMER DROP: inches GRAPHIC SYMBOL RECOVERY WELL CONSTR. USCS SYMBOL PIO SAMPLE SOIL WELL MOTSTURE CONSISTERCY COLOR DESCRIPTION NO. (ppm) DESCRIPTION 2-3 5-6 7-Grout 1.5'-13' 8-9 10 Het Mal Ewasel WKond bounded IGP 607.6, 25/5, 96F 4124 WCF Ned. Same 12 GP 6 Med-rouse Sand. grand 13 Ground 10/Sand Met Same Not 701.6.251.5.51.2 Bealer He 13'-15' GV 14 Med. Evanel Gyard Wsand wet Mod Sante 15 68 50%, G, 45%, S, 5%, F 12 16 Sand 15'-19' Same Same Met 10 17-10 WET DEUSE Same Same Įΰ 18-11 MUST Sit w/gravel light basin ML 19. 20

BORING LOG PROJ. NAME: Wiggins Property METHOD OF DRILLY 8" Auger PROJECT NO.: 0259805001 Sheet / of LOCATION: 3454 Santa Rosa Ave SAMPLER: Split Spoon LOGGED BY: PON Xayasaeng BORING #: SP-2 00: IO: DATE STARTED: 5/5/05 BORING DIAMETER: S 1 TIME: DATE COMPLETED: 5/5/05 ORILLING CO.: MASCAde DVIlling Inc. · TIME: TOTAL DEPTH OF BORING: 19,5 C57 LIC. #: 717510 DEPTH TO GROUNDWATER: DRILLER: James Inches SURFACE CONDITIONS: Dirt Ibs. | HAMMER DROP: HAMMER WGT .: GRAPHIC SYMBOL RECOVERY WELL CONSTR. WELL DESCRIPTION USCS SYMBOL SOIL DESCRIPTION SAMPLE MOISTURE CONSISTENCY COLOR (ppm) NO. 2-3-4-5-Growt 15'-13' 6-8-10-11-12-13-Silty Grazzel w/Sind Pentramic 13,5-155 Met STYC IA 14-6N 5 5 Net Same avey 7 16-GV Ŕ 7 WEF grey Same 10]Gish Sand 15,5'-19,5' 12 0 grey wet 10 Same 18] E/Jy 12 15 20-

BORING LOG PROJ. NAME: WIGGINS PIDIPYTY METHOD OF DRILLY 8" Auger SAMPLER: Spit Spoon 0 PROJECT NO.: 0259805001 Sheet / of 7 LOCATION: 3454 Santa Rosa Ave LOGGED BY: PON Xallasgerig BORING #: SP-3 00: ID: DATE STARTED: 5/5/05 BORING DIAMETER: 🔉 11 TIME: DATE COMPLETED: 5/5/05 DRILLING CO.: PASCAde DVIlling Inc. · TIME: TOTAL DEPTH OF BORING: C57 LIC. #: 717510 DEPTH TO GROUNDWATER: DRILLER: James inches SURFACE CONDITIONS: Dirt IDS. HAMMER DROP: HAMMER WGT.: RECOVERY WELL CONSTR. GRAPHIC SYMBOL SOIL DESCRIPTION WELL DESCRIPTION USCS SYMBOL PIO SAMPLE MOISTURE CONSISTENCY COLOR (ppm) NO. 2-Grout 1.5 -19' 10-12-13-4-15-Well graded gravel Dark Grey Net ODOR wisand 18-GW boyle, 35/, 5/F Same TAIRT Sawas 6 17-6W 7 wet Silt W/sand light brown ML Well graded grave Dark Grey wet 1)/sand 10 19-60 Bentenne 19'-21' 501.G. 401.5,51.F 6 7 No recovery 20-10 5

PROJ. NAME: Wiggins Property PROJECT NO.: 025980500/ Sheet 2 of 2 LOGGED BY: PON XAYASALYA BORING #: SP-3

ОЕРТН	GRAPHIC SYMBOL	RECOVERY	BLOWS	SAMPLE NO.	USCS	SOIL DESCRIPTION	COLOR		сонѕіѕтансу	PEO (ppm)	WELL CONSTR.	WELL DESCRIPTION
	<u> </u>		9			well-graded gravelw/sand	DarkGrey	Wef		ODCR		
22-	GW		10			gravel w/sand						Sand 21'- 25,5'
- 23			10			same	DarkGrey	wet				20000 21 2313
	GW		9					<u> </u>				
24— -	,		10			Same	Dark Grey	wet				
25-	Bh.		9			Clay	lightbown	Wet			11.	{
- 6							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
- 7 <u>7</u>											}	
- 12	}										1	
28 –	-	<u> </u>			1					 	-	
29 –											-	
	-	\vdash						<u> </u>		-	1	
30	7]	
31-	1	-	 							-	-	
32-]		ļ								-	
	-	-	-						<u> </u>		-	
33-	7									ļ	_	
34-	-	-	 		- 					-	-	
35-	1											
	-	-	-	<u> </u>							-	
36-												
37-	-	-	-	-						-	-	
38-	1											
	4	\vdash	┼							-	-	
39-			1									
40-	_	-	-	+						-	_	
A I	+		-									
41	7											
42	-	-	+					-			-	
43	1		1									
	+	-	+-	-							-	
44	7											
45]											

BORING LOG PROJECT NO.: 025980500/ | Sheet / of 2 PROJ. NAME: WIGGINS Property METHOD OF DRILL! S" Auger SAMPLER: Split Spoon of LOCATION: 3454 Santa Rosa Ave LOGGED BY: POY Xayasaeng BORING #: SP-4 00: ID: DATE STARTED: 5/5/05 BORING DIAMETER: 9 TIME: DATE COMPLETED: 5/5/05 ORILLING CO.: Mascade Dvilling Inc. TIME: TOTAL DEPTH OF BORING: 24' C57 LIC. #: 717510 DEPTH TO GROUNDWATER: DRILLER: James Ibs. HAMMER DROP: inches SURFACE CONDITIONS: Dirt HAMMER WGT.: GRAPHIC SYMBOL RECOVERY BLOWS WELL CONSTR. USCS SYMBOL WELL DESCRIPTION SOIL DESCRIPTION SAMPLE MOESTURE CONSISTENCY COLOR (ppm) NO. 2-3-8-Grow+ 1.5'-18' 10-||---12-13-4--15-16-17-Bentonite 18'-20' 18wet 7 Refer to MW-4 boxing log 19--Dofer to MW-4 Wet 10 20-Sand buxing Log 9

PROJ. NAME: Wisgins Property PROJECT NO.: 025980500/ Sheet 2 of 2 LOGGED BY: PON XAMASALMA BORING #: 5P-4

110	GRAPHIC SYMBOL	3ECOVERY	BLOWS	SAMPLE NO.	USCS	SOIL DESCRIPTION	COLOR	MOTSTURE	CONSISTENCY	PIO (ppm)	WELL	COMS I M.	WELL DESCRIPTION
Į	ì		7			Sand w/gravel 25/16,70/15,5/17	Davk Grey	wet	<u> </u>	,	, ,		
2-	SP	-	7			25/101, 40/10, 3/17					-		Sand 21'-24'
3-	sρ		9			save	Dark Grey	Wet		<u> </u>	-		
	سأك		4			Clay w/gravel	light brown	919					
_					-					-	-	-	
; _												F	
-	}												
	1											-	
-	-	\vdash	 										
) —	1									-	4	-	
)	-	-	-							-			
)-	†									-	-	-	
	-	-	+		-								
} -]									-		-	
2-	\dashv	-	+	- 	-							t	
3-												F	
	-	-	+								\dashv	.	
4-	-												
5		-	-							+	\dashv		
36	1	-	-										
30									-	_			
37	\dashv	-	-		_								
38											\blacksquare		
	4	-	-								\dashv		
39		t											
40)—]	-						_			\dashv		
	+	}	-										
4													
4	2-	}								_			
	-	-	_										
4.	3-												
4	4-		-							-			
	5-	}	-									1	

BORING LOG PROJ. NAME: WIGGINS Property METHOD OF DRILLY 8" AUGER PROJECT NO.: 0259805001 Sheet / of Z LOCATION: 3454 Santa Rosa Ave LOGGED BY: PON X and swells BORING #: 5P-5 SAMPLER: Split Spoon 00: 10: DATE STARTED: 5/5/05 BORING DIAMETER: 8 TIME: DATE COMPLETED: 5/5/05 DRILLING CO: PASCAde DVIlling INC. TIME: TOTAL DEPTH OF BORING: 25' C57 LIC. #: 717510 DEPTH TO GROUNDWATER: DRILLER: James SURFACE CONDITIONS: DIV+ ibs. HAMMER DROP: Inches HAMMER WGT.: GRAPHIC SYMBOL RECOVERY WELL CONSTR. PID WELL DESCRIPTION SOIL DESCRIPTION USCS SYMBOL SAMPLE MOTSTURE CONSISTENCY ROJOD (ppm) NO. 2-3-5-6 Grout 15'-19' 8-9-10-11-12-13-15-16-17-18-Refer to MW-4 Dark Gren wet 10 or B-1 barries logs 19-16W Boutenite, 19-21 DarkGrew wat Same 10 20hast book wet Silty Sand 7 8

PROJ. NAME: WiggINS Property PROJECT NO.: 025980500/ Sheet 2012 LOGGED BY: POY Xayasarya BORING #: 5P-5

DEPTH	GRAPHIC SYMBOL	RECOVERY	BLOWS	SAMPLE NO.	USCS	SOIL DESCRIPTION	COLOR	MOESTURE	COH51515HCY	P10 (ppm)	WELL	2000	WE DESCA	ELL MPTION
	ĺ		9			Sand W/grave/ 25/1.G1, 70%.S, 5%.F	Dark brown	Wet			-	.′		
2-	SW		9		-	25/G, 70/S, 5/F			 	<u> </u>	<u> </u>	· L_		
•		 	7		-	Same	Darklorown	Nef	 	 		i.	Sand	21'-25'
3-	SW		9			3/8/3/	77.51					, -		
4-	-		9		- 					ļ	11-	-		
	-	-	-								1E	-		· ·
25-										ļ				
26 -	4	-	 					 		-	-	-	***************************************	·
	-	-	 					1		1	1	 		
27 -	-	-]			
28 -							<u> </u>	-	1		-	-		
	4	\vdash									1	-		
29	1	-	-	-										
30							<u> </u>	ļ				-		
	-	}_		\			 	 	-	_		-	·····	
31	\dashv	 	+											
32	_								 		_	}		
	-	-						-			-	-		
33	\dashv											Ţ		
34												.		
	-	-	_						_	-	-			
35	; -	-	+		 									
31	,]										_			
J	'	-						 		+				
3	7-	-	-						-	_	-			
,	, -	 							-					
] 3	8-													
3	9—	}	-								-			
	4	}	-											
4	0-	ŀ												
	41-													<u></u>
					 			_					<u></u>	
4	12-													
	13-													<u>,</u>
'	,,,,,												 	
,	14-							_					<u> </u>	
	4												-	

BORING LOG PROJECT NO.: 0259805001 PROJ. NAME: WIGGINS Property Sheet / of 7 METHOD OF DRILLY 8" Auger LOCATION: 3454 Santa Rosa Ave. LOGGED BY: POY Xayasayay BORING #: 5P-6 SAMPLER: Split Spoon 00: IO: DATE STARTED: 5/5/05 BORING DIAMETER: 🔉 11 TIME: DRILLING CO.: MASCAde DVIlling INC. DATE COMPLETED: 5/5/05 TIME: TOTAL DEPTH OF BORING: 24' C57 LIC. #: 717510 DEPTH TO GROUNDWATER: ORILLER: James Inches SURFACE CONDITIONS: Dirt lbs. HAMMER DROP: HAMMER WGT.: RECOVERY GRAPHIC SYMBOL WELL CONSTR. PIO WELL DESCRIPTION USCS SYMBOL SOIL DESCRIPTION SAMPLE MOISTURE CONSISTENCY COLOR (ppm) NO. 2-3~ 4-8-Growt 1.5-17' g-10-12-13-4-5-16-17-Bentovite 17-19' 18-WCT Rheish Strong Gravet Wisend COOP 5 19_GP 6016,3515,57.F GYEN 8 wied-Gravel ु Sand 19'-24' wet SAULO S. (115) 6 -4 8

PROJ. NAME: Wingins Property PROJECT NO.: 025980500/ Shee: Zot 2 LOGGED BY: PON XAYASANG BORING #: SP-6

GRAPHIC	SYMBOL	BLOWS	SAMPLE NO.	USCS SYMBOL	SOIL DESCRIPTION	COLOR	MOTSTURE	CONSISTANCY	נוויקקו	35.5	בסוס וווי	ÖESC	ELL RIPTION
		19			Same		wet		ace		; -	<	19 2
2	-	7						 			.	Sand	19-241
+	-}-	10		+	same						,		
3-		17					20-3-1		₩		` [_		
1— —		7	1		Clay	light brown	1401.24		-	 	<u> </u>		
. 🕇	-	+											
j												·	
i —	-						·	<u> </u>	-	-	-		
-	-	-		-						-	-		***************************************
7-	-		2										
3						1		 		-	-		
\dashv	-	_							-	-	-		
9-	}									1			
0-													
۲ ۲	-						+			-	-		
31-	-							 	+	\dashv	-		
12-													
,,,	[<u> </u>	-		_	-		
33-									_	\dashv	}		
,											. [
34-										4	}		
35-								 					
_	·		-	 -			-		_	\dashv			
36-													
- 37—													
_	1	-						_				<u> </u>	
38—	1	-		-			-			\neg			
20	1												
39 -										_			
40-	-						_	•					
	-						_			-			
4 -	1												
42-										_			
74	-												
43-	-	-					_					-	
4 4	1												
44-	7							ļ					

BORING LOG PROJECT NO .: 025980500/ Sheet / of PROJ. NAME: WIGGINS Property METHOD OF DRILLY 8" AUGEY LOCATION: 3454 Santa Rosa Ave. LOGGED BY: POYT XALIASARING BORING #: SP-7 SAMPLER: Split Spoon BORING DIAMETER: 9" 00: DATE STARTED: 5/4/05 TIME: ORILLING CO .: CASCADE DVILLING INC. DATE COMPLETED: 5/4/05 · TIME: TOTAL DEPTH OF BORING: 19' C57 LIC. #: 717510 DEPTH TO GROUNDWATER: DRILLER: James SURFACE CONDITIONS: Dirt lbs. HAMMER DROP: Inches HAMMER WGT .: RECOVERY WELL CONSTR. GRAPHIC SYMBOL (DIS) SAMPLE NO. USCS SYMBOL WELL DESCRIPTION SOIL HOISTURE CONSISTENCY ROJOD DESCRIPTION 2-3-5 8 Growt 1,5 - 12' 8-9-10-Dvillers Note: Sand & Gravel 11-12-Bentonite 12'-14' 13-14-15-Sandy Silt W/grave Plue W/chie Wast 8 9 16-1 M/ Sand 14'-19' 10 Wet Sand w/gravel Gray 10 10 10 18-Clay MUST 8 graul 11 JC L 19-20~

BORING LOG PROJ. NAME: Wiggins Property METHOD OF DRILLY 8" Auger PROJECT NO.: 0259805001 Sheet / of LOCATION: 3454 Santa Rosa Ave LOGGED BY: POYT XallASACHE BORING #: 5P-8 SAMPLER: Split Spoon 00: IO: DATE STARTED: 5/3/05 BORING DIAMETER: 9 TIME: DATE COMPLETED: 5/3/05 DRILLING CO .: Cascade Dvilling Inc. · TIME: TOTAL DEPTH OF BORING: 21' C57 LIC. #: 717510 DEPTH TO GROUNDWATER: DRILLER: James SURFACE CONDITIONS: Dirt lbs. HAMMER DROP: Inches HAMMER WGT.: GRAPHIC SYNBOL RECOVERY WELL CONSTR. USCS SYMBOL SOIL DESCRIPTION PIO WELL . DESCRIPTION SAMPLE MOTSTURE CONSISTENCY COLOR (ppm) NO. 2-3-4-6 Good 15'-14' g-10-12-13-4--Bewlonde 14-16 15-Sind w/silt Agravel 20/6, 70/5, 10/F DIME Moist 0 8 16-7 wet Same 10 11 10 Sand 110-21' 18-10 gravel w/sit Asand Met 1.61.6. 70% S. 10% 13 19-Sand lean claus 20 W/gravel 14 10

						BORI	NG I	_ O	G			
PROJ METH	. NAI	1E: OF [M. Brili	agins	Proper Auger			N: 34	54 Sa	nta.	12050	Sheet / of /
SAMI	PLER: (NG C) [AN	> <u>рГ</u>	1+ Spoo.	Ω	00: 10:	LOGGED DATE ST	ARTED:	5/3	105)	BORING #: SP-9 TIME:
ORIL	LING	CO	.: (Vascad 7510	e Di	rilling Inc.	DATE CO	MPLETEC EPTH OF	1: 5 /3	103	<u> </u>	· TIME: ·
IRO	LER:		Tan	nes	Turris	1ER DROP: Inch	OEPTH T	TO GROUN	OWATER:			
HAM	MER		:	lbs	. ITAM	1ER OROP: Inch	ies Sont Ac	C GOIVEL	10(13.	1/13		
DEPTH	GRAPHIC SYMBOL	RECOVER	BLOWS	SAMPLE NO.	USCS	SOIL DESCRIPTION	COLOR	MOLSTURE	CONSISTERCY	PID (ppm)	WELL CONSTR.	WELL DESCRIPTION
1-												
2-												
3-	-								1			
4-												
5-												
6	-										1 1	
7	-											Grout 1.5- 15.5'
8	+											
9	-											
10	4											
	4											
	4											
	4	-	-								-	
	5—	N	10	>		Souderlavantel	ovey bu	e we	+-			
	6	3	8			Sandwiggravel and silt	7.537					8
		37	8			Same						
	8-		8			Sand w/gyanes 20/6,75%,5%	greyblu	e wet			_ : _ : -	
	19-]-	<u>}</u>	8				1		,			Sand 17.5'-21.5
	20-		ĺ	2		Gravel W/ Sand 401 G, 35/5,5	le bywn	e we	<u> </u>		·	
	21		ىل	2					<u> </u>			

BORING LOG PROJ. NAME: Wiggins Property PROJECT NO.: 025980500/ Sheet / of METHOD OF DRILL! 8" Auger LOCATION: 3454 Santa Rosa Ave LOGGED BY: PON Xayasaens BORING #: SP-10 SAMPLER: Split Spoon 00: ID: DATE STARTED: 5/3/05 TIME: BORING DIAMETER: 2 1 DATE COMPLETED: 5/3/05 ORILLING CO .: MASCADE DVILLING INC. · TIME: TOTAL DEPTH OF BORING: 21' C57 LIC. #: 717510 DEPTH TO GROUNDWATER: DRILLER: James inches SURFACE CONDITIONS: Dirt ibs. HAMMER DROP: HAMMER WGT.: RECOVERY WELL CONSTR. GRAPHIC SYMBOL PID WELL DESCRIPTION USCS SOIL DESCRIPTION SAMPLE MOISTURE CONSISTENCY COLOR (maga) NO. 2-3-4-5 8 Grant 15-15' 8 9-10-12-13~ 14-ODDIL H 15-Clayey gravel w/sand BYDUN Bertonite 15-17 16-1GC 7 50:16,20:18,301. F Blue Black 5 Hn Sand 1016, 6015, 301 F 8 9 SM á 18-Gravel Wisand Dark Wour 9 Sand 17'-21' 401,6,351,6,51.F 10 19-10 Same 10 20-10 10

BORING LOG PROJ. NAME: WIGGINS Property PROJECT NO.: 025980500/ Sheet / of LOCATION: 3454 Santa Rosa Ave METHOD OF DRILLY &" AUGER SAMPLER: Split Spoon LOGGED BY: POYT Xayasaaya BORING #: SP-11 00: DATE STARTED: 5/3/05 TIME: BORING DIAMETER: 9 DATE COMPLETED: 5/3/05 DRILLING CO .: PASCAde DVILLING INC. · TIME: TOTAL DEPTH OF BORING: 16 C57 LIC. #: 717510 DEPTH TO GROUNDWATER: DRILLER: James Ibs. HAMMER DROP: Inches SURFACE CONDITIONS: Dirt HAMMER WGT .: RECOVERY WELL CONSTR. GRAPHIC SYMBOL PIO SAMPLE NO. SOIL DESCRIPTION WELL DESCRIPTION USCS SYMBOL MOTSTURE CONSISTENCY COLOR (mgg) 2-3-4. Growt 1.5-12' 5-8 8 g. Some gravel on 10-Blee grey Bentonte 10'-12 MOIST Sit w/Clay Ž 7 11-1M live ary moist Sanc ML B 10 13--Blue gray most Silter Clay Œ Spud 12 - 16 14-104 0 7 Blueaven moist to 3,1+w/Clau 13 15-INL JAU 12 10 16-17-18-19-20-

BORING LOG PROJ. NAME: Wiggins Property METHOD OF DRILLY 8" Auger PROJECT NO.: 0259805001 Sheet / of 2 LOCATION: 3454 Santa Rosa Ave LOGGED BY: Por Xayasagna BORING #: 5P-12 SAMPLER: Split Spoon 00: IO: DATE STARTED: 5/3/05 TIME: BORING DIAMETER: 9 DRILLING CO .: Pascade Dvilling Inc. DATE COMPLETED: 5/3/05 · TIME: TOTAL DEPTH OF BORING: 25.5 C57 LIC. #: 717510 DEPTH TO GROUNDWATER: DRILLER: James Inches SURFACE CONDITIONS: DIFT HAMMER DROP: lbs. HAMMER WGT.: GRAPHIC SYMBOL RECOVERY WELL CONSTR. WELL DESCRIPTION PIO USCS SYMBOL SOIL DESCRIPTION SAMPLE MOISTURE CONSISTENCY BLOWS COLOR (mqq) NO. 2-3-5-6. Corout 1.5'-18' 8-9-10-11-12 13-14-15 Wet clay Greysla 10 w/blue 17 16-CL 12 wet Clay w/silt Grey 10 17-1 ICL 12 18-WEX greyish 9 Bentonite 18'-20' w/blue 19-1 ML 12 14 Wet blue Clay wilselt 10 Sand 10 CL 10

PROJ. NAME: Wiggins Property PROJECT NO.: 025980500/ Sheet Z of Z LOGGED BY: POY XAYASARYA BORING #: SP-12

рертн	GRAPHIC SYMBOL	RECOVERY	BLOWS	SAMPLE NO.	USCS SYMBOL	SOIL DESCRIPTION	COLOR		}	019 (mqq)	WELL CONSTR.	WELL DESCRIPTION
-]		15			Si It	Blue	wet			(1)	1
22	ML	+	16		+							Savd 20'-25.5'
23-	1,,		12	-	1	Sitt w/clay	Blue	Wet	<u> </u>	<u> </u>		
- 24-	ML		15								1	
	1	-	19		+	Norenovery					\ \ \ \ \ \ \	()
25-	1_	1	20								1.7	
26-	1	-	+									
27-	1		1							-		
	4		+									
28~	4	F	I						-	-	-	
29 -	1										†	
30-	-	-	+-		_			_		+	+	
31-	1		#							Ţ	7	
	4	-	+							1	_	
32			1							-	-	
33	-		<u> </u>							1		
34	4	. -	-		_			·		+		
35	;_								1	1		
	4	-	+		_						\dashv	
38	,]	-	1									
37	/-	-	-								\exists	
38	a		_									
	-	-	-									
3	J-7										_	
41	0-											
	41-	}										
	12-											
	4		-									
4	13-									1		
1	14-		-									
	45 <u> </u>											